L^1 Stability of Hyperbolic Coservation Laws with Geometrical Sources and Kinetic Equations
具有几何源和动力学方程的双曲守恒定律的 L^1 稳定性
基本信息
- 批准号:0203858
- 负责人:
- 金额:$ 8.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-08-01 至 2005-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NSF Award Abstract-DMS-0203858 Mathematical Sciences: $L^1$ stability of hyperbolic conservation laws with geometrical sources and kinetic equationsAbstract0203858 Ha This research addresses the stability of weak solutions of hyperbolic conservation laws and related problems in kinetic theory. Stability will be studied by constructing explicit Lyapunov functionals. Specific goals are: (i) establish the stability of weak solutions to hyperbolic conservation laws with geometric source terms and certain kinetic models with collision terms; (ii) study the nonlinear stability of shock waves of the Boltzmann equation with boundary effects, and hydrodynamic limits of some collisional kinetic equations.Hyperbolic conservation laws with geometric source terms appear in many physical situations, such as shallow water flow through a channel, nozzle flow through a duct, and self-similar gas flow in multi-dimensional Euler equations. The issue of stability of solutions is important in the design of systems modeled by these equations, which include aircraft and space shuttle engines. The Boltzmann equation and the Smoluchowski equation are fundamental equations in kinetic theory. Stability analysis for these equations can be used in development of accurate methods for numerical simulation of the corresponding physical systems.
NSF Award Abstract-DMS-0203858 Mathematical Sciences:$L^1$ stability of b曲守恒律with geographic source and kinetic equations摘要0203858 Ha本研究致力于双曲守恒律弱解的稳定性以及动力学理论中的相关问题。 稳定性将通过构造显式的李雅普诺夫泛函来研究。 具体目标是:(i)建立具有几何源项的双曲守恒律方程和具有碰撞项的动力学模型弱解的稳定性;(ii)研究具有边界效应的Boltzmann方程激波的非线性稳定性,以及某些碰撞动力学方程的流体动力学极限。带几何源项的双曲守恒律出现在许多物理情形中,如浅水流过通道,通过管道的喷嘴流,以及多维欧拉方程中的自相似气体流。 解的稳定性问题在由这些方程建模的系统设计中很重要,包括飞机和航天飞机发动机。 玻尔兹曼方程和Smoluchowski方程是动力学理论中的基本方程。这些方程的稳定性分析可用于发展相应物理系统数值模拟的精确方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marshall Slemrod其他文献
Asymptotic behavior of periodic dynamical systems on banach spaces
- DOI:
10.1007/bf02415724 - 发表时间:
1970-12-01 - 期刊:
- 影响因子:0.900
- 作者:
Marshall Slemrod - 通讯作者:
Marshall Slemrod
Stability of spherical isothermal liquid-vapor interfaces
- DOI:
10.1007/bf00987223 - 发表时间:
1995-06-01 - 期刊:
- 影响因子:2.100
- 作者:
Henri Gouin;Marshall Slemrod - 通讯作者:
Marshall Slemrod
One-dimensional structured phase transformations under prescribed loads
- DOI:
10.1007/bf00041988 - 发表时间:
1985-01-01 - 期刊:
- 影响因子:1.400
- 作者:
Jack Carr;Morton E. Gurtin;Marshall Slemrod - 通讯作者:
Marshall Slemrod
An energy stability method for simple fluids
- DOI:
10.1007/bf00276175 - 发表时间:
1978-03-01 - 期刊:
- 影响因子:2.400
- 作者:
Marshall Slemrod - 通讯作者:
Marshall Slemrod
On the decay rate of the Gauss curvature for isometric immersions
- DOI:
10.1007/s00574-016-0136-z - 发表时间:
2016-03-19 - 期刊:
- 影响因子:0.900
- 作者:
Cleopatra Christoforou;Marshall Slemrod - 通讯作者:
Marshall Slemrod
Marshall Slemrod的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marshall Slemrod', 18)}}的其他基金
Research on Nonlinear Partial Differential Equations of Compressible Fluid Mechanics
可压缩流体力学非线性偏微分方程研究
- 批准号:
0647554 - 财政年份:2007
- 资助金额:
$ 8.2万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Multi-Dimensional Problems for the Euler Equations of Compressible Fluid Flow and Related Problems in Hyperbolic Conservation Laws
FRG:合作研究:可压缩流体流动欧拉方程的多维问题及双曲守恒定律中的相关问题
- 批准号:
0243722 - 财政年份:2003
- 资助金额:
$ 8.2万 - 项目类别:
Standard Grant
Research on Plasma Sheaths: An Interdisciplinary Mathematical-Experimental Program
等离子体鞘研究:跨学科数学实验项目
- 批准号:
0071463 - 财政年份:2000
- 资助金额:
$ 8.2万 - 项目类别:
Standard Grant
Research in Nonlinear Problems Arising in Mechanics
力学非线性问题的研究
- 批准号:
9803223 - 财政年份:1998
- 资助金额:
$ 8.2万 - 项目类别:
Standard Grant
Travel Support for Fifth International Workshopon Mathematical Aspects of Fluid and Plasma Dynamics
第五届流体与等离子体动力学数学方面国际研讨会的差旅支持
- 批准号:
9731084 - 财政年份:1998
- 资助金额:
$ 8.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Research in Nonlinear Problems Arising in Mechanics
数学科学:力学中非线性问题的研究
- 批准号:
9531845 - 财政年份:1996
- 资助金额:
$ 8.2万 - 项目类别:
Standard Grant
U.S. China Joint Research: Research in Relaxation Models for Phase Transitions
中美联合研究:相变弛豫模型研究
- 批准号:
9601376 - 财政年份:1996
- 资助金额:
$ 8.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Research in Nonlinear Problems Arising in Mechanics
数学科学:力学中非线性问题的研究
- 批准号:
9406295 - 财政年份:1994
- 资助金额:
$ 8.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Research in Dynamic Problems Arising in Mechanics and Control
数学科学:力学和控制中出现的动态问题的研究
- 批准号:
9006945 - 财政年份:1991
- 资助金额:
$ 8.2万 - 项目类别:
Continuing Grant
US-France Cooperative Research: Conservation Laws in Continuum Mechanics
美法合作研究:连续介质力学守恒定律
- 批准号:
8914473 - 财政年份:1990
- 资助金额:
$ 8.2万 - 项目类别:
Standard Grant
相似海外基金
Microlocal Analysis and Hyperbolic Dynamics
微局域分析和双曲动力学
- 批准号:
2400090 - 财政年份:2024
- 资助金额:
$ 8.2万 - 项目类别:
Continuing Grant
Ergodic theory and multifractal analysis for non-uniformly hyperbolic dynamical systems with a non-compact state space
非紧状态空间非均匀双曲动力系统的遍历理论和多重分形分析
- 批准号:
24K06777 - 财政年份:2024
- 资助金额:
$ 8.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: Moving to higher rank: from hyperbolic to Anosov
会议:迈向更高级别:从双曲线到阿诺索夫
- 批准号:
2350423 - 财政年份:2024
- 资助金额:
$ 8.2万 - 项目类别:
Standard Grant
Geometric Techniques for Studying Singular Solutions to Hyperbolic Partial Differential Equations in Physics
研究物理学中双曲偏微分方程奇异解的几何技术
- 批准号:
2349575 - 财政年份:2024
- 资助金额:
$ 8.2万 - 项目类别:
Standard Grant
Geodesic arcs and surfaces for hyperbolic knots and 3-manifolds
双曲结和 3 流形的测地线弧和曲面
- 批准号:
DP240102350 - 财政年份:2024
- 资助金额:
$ 8.2万 - 项目类别:
Discovery Projects
RUI: Nonuniformly Hyperbolic and Extended Dynamical Systems
RUI:非均匀双曲和扩展动力系统
- 批准号:
2350079 - 财政年份:2024
- 资助金额:
$ 8.2万 - 项目类别:
Standard Grant
Hyperbolic Geometry and Gravitational Waves
双曲几何和引力波
- 批准号:
2309084 - 财政年份:2023
- 资助金额:
$ 8.2万 - 项目类别:
Continuing Grant
RUI: Pure and Applied Knot Theory: Skeins, Hyperbolic Volumes, and Biopolymers
RUI:纯结理论和应用结理论:绞纱、双曲体积和生物聚合物
- 批准号:
2305414 - 财政年份:2023
- 资助金额:
$ 8.2万 - 项目类别:
Standard Grant
C*-algebras Associated to Minimal and Hyperbolic Dynamical Systems
与最小和双曲动力系统相关的 C* 代数
- 批准号:
2247424 - 财政年份:2023
- 资助金额:
$ 8.2万 - 项目类别:
Continuing Grant