Topics in Topology and Geometry

拓扑与几何专题

基本信息

  • 批准号:
    9803254
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-07-15 至 2002-06-30
  • 项目状态:
    已结题

项目摘要

9803254 Burghelea D. Burghelea plans work in topology, geometric analysis and dynamics, based on methods of linear algebra ``a la von Neumann'' and on regularized determinants of elliptic operators. He plans: 1) to attack a number of open problems on L2-invariants, torsion invariants, relation between torsion and dynamics, 2) to develop new mathematical tools, such as the Hodge theory of geometric complexes associated to Morse-Bott functions, Witten-Hellfer-Sjostrand theory with symmetry and with parameters, and 3) to test these new tools against a number of open problems in geometric analysis and spectral geometry. The research will shed more light on the nature and the power of the L2 invariants and will considerably increase the generality of some successful techniques in geometric analysis and hopefully solve some open problems in topology and spectral geometry. The above work explores the relationship between the shape of a geometric object (a Riemannian manifold), as embodied in its topology and geometry, and sound, as embodied in the spectra of various Laplace operators associated to it -- think in terms of natural frequencies of vibration. It also investigates the constraints imposed by the shape and sound on basic qualitative elements of dynamics such as closed trajectories, attractors, repulsors, and saddle points. The methods used involve unusual quantities introduced by von Neumann, like dimensions that are not integers and volumes of infinitely large objects. The research will investigate the type of additional information about the shape and sound, and about the dynamics on geometric objects, that can be obtained by using these unusual quantities. ***
9803254 Burghelea D. Burghelea计划工作在拓扑学,几何分析和动力学,基于线性代数"a la von Neumann“方法和椭圆算子的正则化行列式。他计划:1)解决L2-不变量、挠率不变量、挠率与动力学之间的关系等方面的一些开放问题; 2)开发新的数学工具,如与Morse-Bott函数相关的几何复形的Hodge理论、具有对称性和参数的Witten-Hellfer-Sjostrand理论; 3)针对几何分析和谱几何中的一些开放问题测试这些新工具。该研究将进一步揭示L2不变量的性质和能力,并将大大增加几何分析中一些成功技术的通用性,并有望解决拓扑学和谱几何中的一些开放问题。上面的工作探讨了几何对象(黎曼流形)的形状(体现在其拓扑和几何结构中)与声音(体现在与之相关的各种拉普拉斯算子的频谱中)之间的关系-从振动的自然频率方面考虑。它还研究了形状和声音对动力学基本定性元素的约束,如闭合轨迹,吸引子,排斥子和鞍点。所使用的方法涉及冯·诺依曼引入的不寻常的量,例如不是整数的尺寸和无限大物体的体积。该研究将调查有关形状和声音的附加信息的类型,以及几何物体的动力学,这些信息可以通过使用这些不寻常的量来获得。***

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dan Burghelea其他文献

A localization theorem for functionalS 1-spaces
  • DOI:
    10.1007/bf01460049
  • 发表时间:
    1988-09-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Dan Burghelea
  • 通讯作者:
    Dan Burghelea
Imbedding hilbert manifolds with given normal bundle
  • DOI:
    10.1007/bf01432254
  • 发表时间:
    1970-09-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Dan Burghelea
  • 通讯作者:
    Dan Burghelea
Local homological properties of analytic sets
  • DOI:
    10.1007/bf01303536
  • 发表时间:
    1972-03-01
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Dan Burghelea;Andrei Verona
  • 通讯作者:
    Andrei Verona
The homotopy category of spectra. III
  • DOI:
    10.1007/bf01114469
  • 发表时间:
    1969-04-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Dan Burghelea;Aristide Deleanu
  • 通讯作者:
    Aristide Deleanu
Alternative to Morse–Novikov theory for a closed 1-form. I
  • DOI:
    10.1007/s40879-019-00368-x
  • 发表时间:
    2019-09-11
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Dan Burghelea
  • 通讯作者:
    Dan Burghelea

Dan Burghelea的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dan Burghelea', 18)}}的其他基金

Mathematical Sciences: Topics in Topology
数学科学:拓扑主题
  • 批准号:
    9501701
  • 财政年份:
    1995
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Free Loop Space, Automorphisms of Manifolds and Cyclic Homology
数学科学:自由循环空间、流形自同构和循环同调
  • 批准号:
    8917914
  • 财政年份:
    1990
  • 资助金额:
    --
  • 项目类别:
    Continuing grant
Mathematical Sciences: Cyclic Homology, Algebra, Topology and Geometry
数学科学:循环同调、代数、拓扑和几何
  • 批准号:
    8701125
  • 财政年份:
    1987
  • 资助金额:
    --
  • 项目类别:
    Continuing grant
Mathematical Sciences: Cyclic Homology, Geometry and Topology
数学科学:循环同调、几何和拓扑
  • 批准号:
    8503739
  • 财政年份:
    1985
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Geometric Topology and Homotopy Theory
几何拓扑与同伦理论
  • 批准号:
    8102686
  • 财政年份:
    1981
  • 资助金额:
    --
  • 项目类别:
    Continuing grant
Homotopy Type of the Group of Automorphisms of Compact Manifolds
紧流形自同构群的同伦型
  • 批准号:
    8003276
  • 财政年份:
    1980
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Homotopy Type of the Group of Automorphisms of Compact Manifolds
紧流形自同构群的同伦型
  • 批准号:
    7903446
  • 财政年份:
    1979
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Geometry and topology of quantum materials
职业:量子材料的几何和拓扑
  • 批准号:
    2340394
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
  • 批准号:
    24K06659
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Conference: The 2024 Graduate Student Topology and Geometry Conference
会议:2024年研究生拓扑与几何会议
  • 批准号:
    2348932
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Topology, Spectral Geometry, and Arithmetic of Locally Symmetric Spaces
职业:拓扑、谱几何和局部对称空间算术
  • 批准号:
    2338933
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
  • 批准号:
    2414922
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Computational topology and geometry for systems biology
系统生物学的计算拓扑和几何
  • 批准号:
    EP/Z531224/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Conference: Richmond Geometry Meeting: Geometric Topology and Moduli
会议:里士满几何会议:几何拓扑和模数
  • 批准号:
    2349810
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Interactions between geometry, topology, number theory, and dynamics
几何、拓扑、数论和动力学之间的相互作用
  • 批准号:
    2303572
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Geometry and topology of surfaces and graphs
曲面和图形的几何和拓扑
  • 批准号:
    2304920
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
  • 批准号:
    2314082
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了