Hyperbolic 3-Manifold Theory
双曲3流形理论
基本信息
- 批准号:9803362
- 负责人:
- 金额:$ 13.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-08-15 至 2002-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9803362 Adams Hyperbolic 3-manifold theory has had a tremendous impact on the field of low-dimensional topology. Outstanding conjectures have fallen, one after the other, with the application of hyperbolic techniques. There has been a shift in the entire approach to low-dimensional topology, as researchers now use rigid geometric arguments to prove topological theorems. The two principal investigators intend to continue their research, both individually and jointly, on the theory and computation of hyperbolic 3-manifolds. Through a set of projects, many relying heavily on their ability to compute explicit examples on a computer, the researchers plan to further the understanding of the connections between hyperbolic 3-manifolds, the invariants that come out of hyperbolic 3-manifold theory, and the traditional topological invariants in 3-manifold theory. They will also consider applications of 3-manifold theory to cosmological models of the spatial universe, working in conjunction with cosmologists. Undergraduates will be involved in original research projects related to this research. A 2-dimensional surface may have positive curvature like a sphere, zero curvature like a flat Euclidean plane, or negative curvature like a saddle. Almost all surfaces can be given negative curvature, meaning that locally, they behave like the hyperbolic plane discovered by Lobachevsky, Gauss, and Bolyai in the last century. An analogous understanding of finite 3-dimensional spaces eluded researchers for decades, but in the mid-1970's W. P. Thurston conjectured that 3-manifolds, the analog of 2-dimensional surfaces one dimension up, can be cut into pieces, each of which has one of eight geometries. He proved the conjecture for vast quantities of 3-manifolds. By far the most commonly occurring geometry for 3-manifolds is hyperbolic geometry. The resulting "hyperbolic structures" are rich and have been used to solve a great many topological and geometrical questions. T he present project continues this work both theoretically and computationally. The theoretical advances make the computations possible, and the explicitly computed examples guide the further development of the theory. In the past year the project has found a new and very exciting application. The spatial universe within which we live is an example of a 3-manifold. Data from NASA's Microwave Anisotropy Probe (MAP) may, in the year 2001, reveal the spatial universe to be finite in extent. If so, algorithms from the present project will be used to determine the exact shape of the universe. The investigators are currently extending their software to tolerate the high levels of noise that will be present in the MAP data, and to handle the spherical and Euclidean cases as well as the hyperbolic one. Preliminary data suggests the real universe is hyperbolic, but the other possibilities cannot yet be ruled out. ***
亚当斯9803362 双曲三维流形理论对低维拓扑学领域产生了巨大的影响。 随着双曲线技术的应用,杰出的作品一个接一个地倒下了。 低维拓扑的整个方法已经发生了转变,因为研究人员现在使用严格的几何参数来证明拓扑定理。 两位主要研究人员打算继续他们的研究,无论是单独还是联合,双曲3流形的理论和计算。 通过一系列项目,许多项目在很大程度上依赖于他们在计算机上计算显式示例的能力,研究人员计划进一步理解双曲三维流形之间的联系,双曲三维流形理论中的不变量,以及三维流形理论中的传统拓扑不变量。 他们还将考虑应用3-流形理论的空间宇宙的宇宙学模型,与宇宙学家一起工作。 本科生将参与与本研究相关的原创性研究项目。 一个二维的表面可以有正曲率像一个球体,零曲率像一个平面欧几里德平面,或负曲率像一个马鞍。 几乎所有的曲面都可以被赋予负曲率,这意味着它们在局部上表现得像上世纪由罗巴切夫斯基、高斯和波尔约发现的双曲平面。 对有限三维空间的类似理解几十年来一直困扰着研究人员,但在20世纪70年代中期,W。P. Thurston指出,三维流形,二维表面的一个维度的模拟,可以切割成碎片,其中每一个都有八个几何之一。 他证明了猜想的大量3流形。 到目前为止,三维流形最常见的几何是双曲几何。 由此产生的“双曲结构”是丰富的,并已被用来解决大量的拓扑和几何问题。 目前的项目在理论和计算上继续这项工作。 理论的进步使计算成为可能,显式计算的例子指导理论的进一步发展。 在过去的一年里,该项目已经找到了一个新的和非常令人兴奋的应用。 我们生活的空间宇宙是三维流形的一个例子。 美国宇航局的微波各向异性探测器(MAP)的数据可能在2001年揭示空间宇宙的范围是有限的。 如果是这样的话,本项目的算法将用于确定宇宙的确切形状。 研究人员目前正在扩展他们的软件,以容忍MAP数据中存在的高水平噪声,并处理球形和欧几里得的情况以及双曲线。 初步数据表明,真实的宇宙是双曲线的,但其他可能性还不能排除。 ***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Colin Adams其他文献
The Adventures of Robin Caruso
- DOI:
10.1007/s00283-009-9055-9 - 发表时间:
2009-06-17 - 期刊:
- 影响因子:0.400
- 作者:
Colin Adams - 通讯作者:
Colin Adams
The mathematical ethicist
- DOI:
10.1007/bf02985790 - 发表时间:
2008-11-12 - 期刊:
- 影响因子:0.400
- 作者:
Colin Adams - 通讯作者:
Colin Adams
On Another Plane
- DOI:
10.1007/s00283-019-09943-2 - 发表时间:
2019-11-05 - 期刊:
- 影响因子:0.400
- 作者:
Colin Adams - 通讯作者:
Colin Adams
To the Fields Medal Committee
- DOI:
10.1007/s00283-018-9783-9 - 发表时间:
2018-02-06 - 期刊:
- 影响因子:0.400
- 作者:
Colin Adams - 通讯作者:
Colin Adams
The Math Museum
- DOI:
10.1007/s00283-016-9649-y - 发表时间:
2016-10-17 - 期刊:
- 影响因子:0.400
- 作者:
Colin Adams - 通讯作者:
Colin Adams
Colin Adams的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Colin Adams', 18)}}的其他基金
Experimental Study of Ion Species Separation in Multi-Component Plasma Shocks
多分量等离子体激波中离子形态分离的实验研究
- 批准号:
1903442 - 财政年份:2019
- 资助金额:
$ 13.86万 - 项目类别:
Continuing Grant
Transformation and change in the Roman province of Egypt from the early to late imperial periods: The Chester Beatty Papyri from Panopolis
罗马埃及行省从帝国早期到晚期的转变和变化:来自帕诺波利斯的切斯特·比蒂纸莎草纸
- 批准号:
AH/E003052/1 - 财政年份:2007
- 资助金额:
$ 13.86万 - 项目类别:
Research Grant
RUI:Hyperbolic 3-Manifolds and Knots
RUI:双曲 3 流形和结
- 批准号:
0306211 - 财政年份:2003
- 资助金额:
$ 13.86万 - 项目类别:
Standard Grant
SMALL Undergraduate Research Project
小型本科生研究项目
- 批准号:
9820570 - 财政年份:1999
- 资助金额:
$ 13.86万 - 项目类别:
Continuing Grant
REU SITE: Mathematical Sciences--REU SMALL Undergraduate Research Project
REU网站:数学科学--REU小型本科生研究项目
- 批准号:
9531328 - 财政年份:1996
- 资助金额:
$ 13.86万 - 项目类别:
Continuing Grant
Mathematical Sciences: Hyperbolic 3-Manifold Theory
数学科学:双曲3流形理论
- 批准号:
9626780 - 财政年份:1996
- 资助金额:
$ 13.86万 - 项目类别:
Standard Grant
Mathematical Sciences: Small Geometry Project
数学科学:小几何项目
- 批准号:
9100267 - 财政年份:1991
- 资助金额:
$ 13.86万 - 项目类别:
Continuing Grant
Mathematical Sciences: RUI: Cusp Volumes in Hyperbolic 3-Manifolds
数学科学:RUI:双曲 3 流形中的尖点体积
- 批准号:
8711495 - 财政年份:1988
- 资助金额:
$ 13.86万 - 项目类别:
Standard Grant
相似国自然基金
基于高速可重构匹配网络的VHF宽带多路跳频Manifold耦合器基础问题研究
- 批准号:61001012
- 批准年份:2010
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CIF:Small:Toward a Modern Theory of Compression: Manifold Sources and Learned Compressors
CIF:小:迈向现代压缩理论:流形源和学习压缩机
- 批准号:
2306278 - 财政年份:2023
- 资助金额:
$ 13.86万 - 项目类别:
Standard Grant
Collaborative Research: New Methods, Theory and Applications for Nonsmooth Manifold-Based Learning
协作研究:非平滑流形学习的新方法、理论和应用
- 批准号:
2243650 - 财政年份:2022
- 资助金额:
$ 13.86万 - 项目类别:
Standard Grant
Collaborative Research: New Methods, Theory and Applications for Nonsmooth Manifold-Based Learning
协作研究:非平滑流形学习的新方法、理论和应用
- 批准号:
1953210 - 财政年份:2020
- 资助金额:
$ 13.86万 - 项目类别:
Standard Grant
Collaborative Research: New Methods, Theory and Applications for Nonsmooth Manifold-Based Learning
协作研究:非平滑流形学习的新方法、理论和应用
- 批准号:
1953189 - 财政年份:2020
- 资助金额:
$ 13.86万 - 项目类别:
Continuing Grant
CHS: Small: Novel Data-adaptive Analytics for Manifold Informatics: Theory, Algorithms, and Applications
CHS:小型:流形信息学的新型数据自适应分析:理论、算法和应用
- 批准号:
1812606 - 财政年份:2019
- 资助金额:
$ 13.86万 - 项目类别:
Continuing Grant
Theory of operator manifold and its application to pattern recognition
算子流形理论及其在模式识别中的应用
- 批准号:
17H01760 - 财政年份:2017
- 资助金额:
$ 13.86万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Construction of an innovative four-dimensional imaging technique using the manifold theory and single-particle experimental data
利用流形理论和单粒子实验数据构建创新的四维成像技术
- 批准号:
16K20913 - 财政年份:2016
- 资助金额:
$ 13.86万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Manifold signal processing theory concerning metric structure and its application to biological signal processing
度量结构的流形信号处理理论及其在生物信号处理中的应用
- 批准号:
26280054 - 财政年份:2014
- 资助金额:
$ 13.86万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Design integration for nonlinear control systems via invariant manifold theory and the development of computational platform
基于不变流形理论的非线性控制系统设计集成和计算平台的开发
- 批准号:
26289128 - 财政年份:2014
- 资助金额:
$ 13.86万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Morava K-theory of the exceptional Lie group and flag manifold
异常李群和旗流形的 Morava K 理论
- 批准号:
24540102 - 财政年份:2012
- 资助金额:
$ 13.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




