Collaborative Research: New Methods, Theory and Applications for Nonsmooth Manifold-Based Learning

协作研究:非平滑流形学习的新方法、理论和应用

基本信息

  • 批准号:
    1953210
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2022-11-30
  • 项目状态:
    已结题

项目摘要

Massive high-dimensional data are ubiquitous in many scientific and engineering disciplines, such as bioinformatics, computer vision, neuroimaging, and signal processing. This proposal is motivated by emerging tools for analyzing data from these disciplines, such as nonsmooth, manifold-based learning with high-dimensional and multidimensional data. Building on the synergy among statistics, machine learning, and optimization, this research will focus on the development of new optimization algorithms and theory for nonsmooth manifold optimization. The project will also build on existing optimization strengths to develop new methods and theory in statistics and machine learning. Software packages will be developed to make the research outcomes readily available to other researchers and practitioners. In addition, the project will enhance the future technical workforce through the training of graduate students. It is known that statistical modeling of high-dimensional data may include the non-smooth regularization in the objective function, and some may even involve non-convex manifold constraints such as orthogonality constraints. The manifold-based learning offers a powerful framework for dimension reduction and signal processing. The combination of non-smooth regularization and non-convex manifold constraints brings new opportunities and challenges for designing optimization algorithms with convergence guarantees and also for developing new statistical methods and theory. The research outcomes of this project will provide new powerful analytic tools in nonsmooth manifold-based learning with theoretical guarantees. Software packages will be developed to make the research outcomes readily available to other researchers and practitioners.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大量的高维数据在许多科学和工程学科中无处不在,如生物信息学、计算机视觉、神经成像和信号处理。这一建议是由新兴的工具来分析这些学科的数据,如非光滑的、基于流形的高维和多维数据学习。基于统计学、机器学习和优化之间的协同作用,本研究将侧重于开发新的非光滑流形优化算法和理论。该项目还将以现有的优化优势为基础,开发统计学和机器学习方面的新方法和理论。将开发软件包,使研究成果随时可供其他研究人员和实践者使用。此外,该项目将通过培养研究生来增强未来的技术劳动力。众所周知,高维数据的统计建模可能包括目标函数中的非光滑正则化,有些甚至可能涉及非凸流形约束,如正交性约束。基于流形的学习为降维和信号处理提供了一个强大的框架。非光滑正则化与非凸流形约束的结合为设计具有收敛性保证的优化算法以及发展新的统计方法和理论带来了新的机遇和挑战。本课题的研究成果将为基于非光滑流形的学习提供新的强大的分析工具和理论保障。将开发软件包,使研究成果随时可供其他研究人员和实践者使用。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Robust Low-Rank Matrix Completion via an Alternating Manifold Proximal Gradient Continuation Method
  • DOI:
    10.1109/tsp.2021.3073544
  • 发表时间:
    2020-08
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Minhui Huang;Shiqian Ma;L. Lai
  • 通讯作者:
    Minhui Huang;Shiqian Ma;L. Lai
An Alternating Manifold Proximal Gradient Method for Sparse Principal Component Analysis and Sparse Canonical Correlation Analysis
  • DOI:
    10.1287/ijoo.2019.0032
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shixiang Chen;Shiqian Ma;Lingzhou Xue;H. Zou
  • 通讯作者:
    Shixiang Chen;Shiqian Ma;Lingzhou Xue;H. Zou
A Riemannian Block Coordinate Descent Method for Computing the Projection Robust Wasserstein Distance
  • DOI:
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Minhui Huang;Shiqian Ma;L. Lai
  • 通讯作者:
    Minhui Huang;Shiqian Ma;L. Lai
Riemannian Stochastic Proximal Gradient Methods for Nonsmooth Optimization over the Stiefel Manifold
  • DOI:
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bokun Wang;Shiqian Ma;Lingzhou Xue
  • 通讯作者:
    Bokun Wang;Shiqian Ma;Lingzhou Xue
Zeroth-order algorithms for nonconvex–strongly-concave minimax problems with improved complexities
用于非凸强凹极小极大问题的零阶算法,并提高了复杂性
  • DOI:
    10.1007/s10898-022-01160-0
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Wang, Zhongruo;Balasubramanian, Krishnakumar;Ma, Shiqian;Razaviyayn, Meisam
  • 通讯作者:
    Razaviyayn, Meisam
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shiqian Ma其他文献

Low-M-Rank Tensor Completion and Robust Tensor PCA
低 M 阶张量补全和鲁棒张量 PCA
带先验约束的地表参数提取的有效反演方法
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    杨华;王锦地;李小文;王彦飞;Shiqian Ma
  • 通讯作者:
    Shiqian Ma
求解随机非线性规划问题的基于随机近似的罚函数方法
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Xiao Wang;Shiqian Ma;Yaxiang Yuan
  • 通讯作者:
    Yaxiang Yuan
Conv-TasSAN: Separative Adversarial Network Based on Conv-TasNet
Conv-TasSAN:基于Conv-TasNet的分离对抗网络
  • DOI:
    10.21437/interspeech.2020-2371
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chengyun Deng;Yi Zhang;Shiqian Ma;Yongtao Sha;Hui Song;Xiangang Li
  • 通讯作者:
    Xiangang Li
Applications of gauge duality in robust principal component analysis and semidefinite programming
规范对偶性在鲁棒主成分分析和半定规划中的应用
  • DOI:
    10.1007/s11425-016-0312-1
  • 发表时间:
    2016-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shiqian Ma;Junfeng Yang
  • 通讯作者:
    Junfeng Yang

Shiqian Ma的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shiqian Ma', 18)}}的其他基金

Collaborative Research: CIF: Small: New Theory, Algorithms and Applications for Large-Scale Bilevel Optimization
合作研究:CIF:小型:大规模双层优化的新理论、算法和应用
  • 批准号:
    2311275
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Distributed Bilevel Optimization in Multi-Agent Systems
协作研究:多智能体系统中的分布式双层优化
  • 批准号:
    2326591
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: New Theory and Applications of Non-smooth and Non-Lipschitz Riemannian Optimization
合作研究:CIF:小:非光滑和非Lipschitz黎曼优化的新理论和应用
  • 批准号:
    2308597
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: New Methods, Theory and Applications for Nonsmooth Manifold-Based Learning
协作研究:非平滑流形学习的新方法、理论和应用
  • 批准号:
    2243650
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: New Theory and Applications of Non-smooth and Non-Lipschitz Riemannian Optimization
合作研究:CIF:小:非光滑和非Lipschitz黎曼优化的新理论和应用
  • 批准号:
    2007797
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
  • 财政年份:
    2025
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
  • 财政年份:
    2025
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
  • 批准号:
    2315700
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
  • 批准号:
    2341426
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
  • 批准号:
    2341424
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
  • 批准号:
    2342244
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
  • 批准号:
    2306378
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
  • 批准号:
    2315699
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding New Labor Relations for the 21st Century
合作研究:理解21世纪的新型劳动关系
  • 批准号:
    2346230
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: New Regression Models and Methods for Studying Multiple Categorical Responses
合作研究:研究多重分类响应的新回归模型和方法
  • 批准号:
    2415067
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了