Mathematical Problems in Percolation and Ising Models

渗滤和伊辛模型中的数学问题

基本信息

  • 批准号:
    9803598
  • 负责人:
  • 金额:
    $ 6.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-08-01 至 2003-01-31
  • 项目状态:
    已结题

项目摘要

9803598 Wu The aim of this research is the study of random spatial systems on the finite dimensional hypercubic lattices and infinite dimensional hyperbolic lattices. Three topics concerning percolation, Ising (ferromagnetic) models, and contact processes will be studied. The first topic concerns percolation and Ising models on hyperbolic lattices. Although Ising models and percolation on the hypercubic lattices have been studied intensively and extensively since they were introduced, these models on hyperbolic lattices have just started to receive attention from physicists and mathematicians. They are found, by both numerical studies and mathematical proofs, to exhibit a phenomenon of multiple phase transitions. Although a few results have been rigorously proved, many statements suggested by numerical studies are to be proved; and many more are to be explored. The second topic concerns a roughening transition of (independent and dependent) percolation on the hypercubic lattices with dimensions larger than or equal to three. This is the analogy of a roughening transition of ferromagnetic Ising models. The third topic is about a phase transition of models with low-dimensional inhomogeneity. These models include percolation, Ising ferromagnetic systems and contact processes. This research by an investigator at an undergraduate institution involves the study of percolation and interacting particle systems. These are probabilistic models, which have been useful in understanding physical systems. Further understanding of these probabilistic models can be helpful to physicists.
9803598吴,本研究的目的是研究有限维双三次格和无限维双曲格上的随机空间系统。我们将研究三个主题:渗流、伊辛(铁磁)模型和接触过程。第一个主题是关于双曲晶格上的渗流和伊辛模型。虽然超立方晶格上的Ising模型和渗流模型自提出以来已经得到了广泛而深入的研究,但这些双曲晶格上的模型才刚刚开始受到物理学家和数学家的关注。通过数值研究和数学证明,它们都表现出多重相变现象。虽然有几个结果已经得到了严格的证明,但数值研究提出的许多说法仍有待证明;还有更多的结论有待探索。第二个主题涉及维度大于或等于3的超立方晶格上(独立的和依赖的)渗流的粗化转变。这是铁磁伊辛模型粗糙跃迁的类比。第三个主题是关于低维非均匀模型的相变。这些模型包括渗流模型、伊辛铁磁系统模型和接触过程模型。这项由本科生机构的研究人员进行的研究涉及渗流和相互作用的粒子系统的研究。这些都是概率模型,对理解物理系统很有用。进一步了解这些概率模型可能会对物理学家有所帮助。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chris Wu其他文献

A super-resolution coded aperture miniature mass spectrometer proof-of-concept for planetary science
  • DOI:
    10.1016/j.ijms.2024.117368
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Tanouir Aloui;Rafael Bento Serpa;Daniel Ross;Scarlett Francini;Chris Wu;Kevin Lee;Kathleen Masse;Justin A. Keogh;Robert Kingston;Heeju Choi;Charles B. Parker;Jennifer C. Stern;M. Bonner Denton;Jeffrey T. Glass;Michael E. Gehm;Jason J. Amsden
  • 通讯作者:
    Jason J. Amsden
Shame, personality orientation, and risk in intimacy: direct and estimated indirect pathways
羞耻、人格取向和亲密风险:直接和估计的间接途径
  • DOI:
    10.1007/s12144-020-00966-z
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Chris Wu;M. Dorahy;Craig Johnston;Katharina Näswall;D. Hanna
  • 通讯作者:
    D. Hanna

Chris Wu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chris Wu', 18)}}的其他基金

RUI: Statistical Mechanics Models on Non-Amenable Graphs
RUI:不适合图的统计力学模型
  • 批准号:
    0505484
  • 财政年份:
    2005
  • 资助金额:
    $ 6.43万
  • 项目类别:
    Continuing Grant
RUI: Some Problems in Percolation and Stochastic Dynamics of Ising Models
RUI:伊辛模型渗流和随机动力学的一些问题
  • 批准号:
    0103994
  • 财政年份:
    2001
  • 资助金额:
    $ 6.43万
  • 项目类别:
    Standard Grant

相似海外基金

Problems in Ramsey theory
拉姆齐理论中的问题
  • 批准号:
    2582036
  • 财政年份:
    2025
  • 资助金额:
    $ 6.43万
  • 项目类别:
    Studentship
Understanding the role of trauma in alcohol and other drug-related problems
了解创伤在酒精和其他毒品相关问题中的作用
  • 批准号:
    DP240101473
  • 财政年份:
    2024
  • 资助金额:
    $ 6.43万
  • 项目类别:
    Discovery Projects
Organic Bionics: Soft Materials to Solve Hard Problems in Neuroengineering
有机仿生学:解决神经工程难题的软材料
  • 批准号:
    FT230100154
  • 财政年份:
    2024
  • 资助金额:
    $ 6.43万
  • 项目类别:
    ARC Future Fellowships
AF: Small: Problems in Algorithmic Game Theory for Online Markets
AF:小:在线市场的算法博弈论问题
  • 批准号:
    2332922
  • 财政年份:
    2024
  • 资助金额:
    $ 6.43万
  • 项目类别:
    Standard Grant
CRII: AF: Streaming Approximability of Maximum Directed Cut and other Constraint Satisfaction Problems
CRII:AF:最大定向切割和其他约束满足问题的流近似性
  • 批准号:
    2348475
  • 财政年份:
    2024
  • 资助金额:
    $ 6.43万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 6.43万
  • 项目类别:
    Standard Grant
Duration models related problems in econometrics
计量经济学中的持续时间模型相关问题
  • 批准号:
    23K25504
  • 财政年份:
    2024
  • 资助金额:
    $ 6.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
  • 批准号:
    2350129
  • 财政年份:
    2024
  • 资助金额:
    $ 6.43万
  • 项目类别:
    Standard Grant
SHF: Small: Taming Huge Page Problems for Memory Bulk Operations Using a Hardware/Software Co-Design Approach
SHF:小:使用硬件/软件协同设计方法解决内存批量操作的大页面问题
  • 批准号:
    2400014
  • 财政年份:
    2024
  • 资助金额:
    $ 6.43万
  • 项目类别:
    Standard Grant
REU Site: Applied Mathematics in Real World Problems
REU 网站:现实世界问题中的应用数学
  • 批准号:
    2349382
  • 财政年份:
    2024
  • 资助金额:
    $ 6.43万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了