Group Proposal in Topology
拓扑中的群提案
基本信息
- 批准号:9803633
- 负责人:
- 金额:$ 70.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-08-01 至 2003-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9803633May This group project in topology deals with research in a wide rangeof topics in topology and related areas of algebra, algebraic K-theory,and geometry. May studies various areas centering on global structuresin stable homotopy theory and related fields. He and his collaboratorshave opened up stable homotopy theory to serious point-set levelalgebraic study with their recent new approach to highly structured ringand module theory. Rings, modules, and algebras can now be defined asobjects with well-behaved products in a symmetric monoidal category ofspectra, allowing many constructions and applications that were notpossible previously. He and Greenlees have opened up new interactionsbetween equivariant and non-equivariant stable homotopy theory withtheir analysis of Tate cohomology and their proof of a completiontheorem for module spectra over MU. Rothenberg studies analytic andcombinatorial torsion invariants in geometric topology. He and hiscollaborators have explored generalizations of the classical invariantsto equivariant and non-compact situations and have constructed torsioninvariants for fiber bundles with compact fibers, these being cohomologyclasses rather than just numerical invariants. Weinberger's work centerson geometry and analysis on compact spaces with singularities and onnoncompact manifolds. His surgery theory on stratified spaces can beapplied directly to various problems and has led to a changed perspectiveon group actions, both in terms of answering old questions and informulating new ones. The perspective is completely integrated with thetheory of homology manifolds at the level of conjecture, and somewhatat the level of theorem. Furthermore, detailed analysis of what wouldbe involved in proving such conjectures seems to have deep connectionswith logic, complexity theory, and non-commutative geometry. A major emphasis of the project is graduate education. With threejunior faculty and fifteen current graduate students in topology atChicago, the topology program supported by this grant is one of theworld's largest. In the three years 1996-98, it has graduated ten newPhD's, with 1998-99 jobs at MIT (2), Michigan (2), Illinois (2), Berkeley,CUNY, Rutgers, and Utah. Students supported on the grant work in a widevariety of areas of algebraic and geometric topology, and some of themwork on the interfaces between algebraic topology and algebraic geometryon the one hand and between geometric topology and differential geometryon the other. Although focused on topology, the work supported by thisgrant impinges on many other areas of mathematics. Some of it alsoimpinges on current work in mathematical physics, where the kinds oftopological and geometric structures studied by the investigators havedirect relevance.***
9803633五月 这个拓扑学的小组项目涉及拓扑学和代数、代数K理论和几何学的相关领域的广泛主题的研究。 梅在稳定同伦理论和相关领域研究以整体结构为中心的各个领域。 他和他的合作者开辟了稳定的同伦理论严重的点集层次代数研究与他们最近的新方法高度结构化的环和模块理论。 环、模和代数现在可以被定义为在谱的对称monoidal范畴中具有良好行为乘积的对象,允许许多以前不可能的构造和应用。 他和Greenlees开辟了新的相互作用之间的等变和非等变稳定同伦理论与他们的分析泰特上同调和他们的证明完成定理模谱超过MU。 Rothenberg研究几何拓扑中的分析和组合挠不变量。 他和他的合作者探索了经典不变量的推广到等变和非紧的情况,并为具有紧纤维的纤维束构建了torsioninvariants,这些是共同源类,而不仅仅是数值不变量。 温伯格的工作中心几何和分析紧空间的奇异性和非紧流形。 他的外科手术理论分层空间可以直接适用于各种问题,并导致了一个改变的视角对集团行动,无论是在回答老问题和informalizing新的。 这个观点在猜想的层次上与同调流形的理论完全结合,在定理的层次上也有所结合。 此外,对证明这些命题所涉及的内容的详细分析似乎与逻辑、复杂性理论和非交换几何有着深刻的联系。 该项目的一个主要重点是研究生教育。 与三个初级教师和十五个当前的研究生在拓扑学在芝加哥,拓扑学计划支持这项赠款是世界上最大的之一。 在1996-98年的三年里,它已经毕业了十个新的博士学位,1998-99年在麻省理工学院(2),密歇根州(2),伊利诺伊州(2),伯克利,纽约市立大学,罗格斯大学和犹他州工作。 学生资助的工作领域广泛的代数和几何拓扑,其中一些工作的接口之间的代数拓扑和代数geometryon一方面和几何拓扑和微分geometryon另一方面。 虽然重点是拓扑学,但这项资助支持的工作影响了数学的许多其他领域。 其中一些也影响了当前的数学物理学工作,在那里,研究人员所研究的拓扑和几何结构有直接的相关性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
J May其他文献
Tracking latrogenic poisoning fatalities using the American Association of poison control centers toxic exposure surveillance system
- DOI:
10.1016/s0196-0644(99)80192-9 - 发表时间:
1999-10-01 - 期刊:
- 影响因子:
- 作者:
P Wax;J May - 通讯作者:
J May
20 Biography Asish Law
20 传记 阿什·劳
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
D. Jayasimha;Stredney;R. Yagel;S. F. May;M. Torello;Supercomputer Assisted;Brain Visualization;Ray Tracer;Yagel;A. Kaufman;Veznia;P. Fletcher;P. K. Robertson;Ebert;J. Scott;Y. Kurzion;Jayasimha;J May;K. Patel;R. Rao;L. Schwiebert;Keates;R. Hubbold;Schroder;J. B. Salem - 通讯作者:
J. B. Salem
The utilization of the burden nasoscope in nasotracheal intubation: Does it make a difference?
- DOI:
10.1016/s0196-0644(99)80421-1 - 发表时间:
1999-10-01 - 期刊:
- 影响因子:
- 作者:
TC Rock;CK Stone;J May;JS Stapczynski - 通讯作者:
JS Stapczynski
J May的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('J May', 18)}}的其他基金
RTG: Geometry and topology at the University of Chicago
RTG:芝加哥大学的几何和拓扑
- 批准号:
1344997 - 财政年份:2014
- 资助金额:
$ 70.28万 - 项目类别:
Continuing Grant
Topics in Algebraic Topology and Related Areas
代数拓扑及相关领域的主题
- 批准号:
0905789 - 财政年份:2009
- 资助金额:
$ 70.28万 - 项目类别:
Standard Grant
Conference on Category Theory and its Applications in Memory of Saunders MacLane
纪念桑德斯·麦克莱恩范畴论及其应用会议
- 批准号:
0614549 - 财政年份:2006
- 资助金额:
$ 70.28万 - 项目类别:
Standard Grant
University of Chicago's VIGRE Program
芝加哥大学 VIGRE 项目
- 批准号:
0502215 - 财政年份:2005
- 资助金额:
$ 70.28万 - 项目类别:
Continuing Grant
Workshop on n-Categories: Foundations and Applications
n 类别研讨会:基础与应用
- 批准号:
0354538 - 财政年份:2004
- 资助金额:
$ 70.28万 - 项目类别:
Standard Grant
VIGRE: The University of Chicago's Vertical Integration Program
VIGRE:芝加哥大学的垂直整合计划
- 批准号:
9977134 - 财政年份:2000
- 资助金额:
$ 70.28万 - 项目类别:
Continuing Grant
Mathematical Sciences: Group Proposal in Topology
数学科学:拓扑学小组提案
- 批准号:
9423300 - 财政年份:1995
- 资助金额:
$ 70.28万 - 项目类别:
Continuing Grant
Mathematical Sciences: Topics in Topology
数学科学:拓扑主题
- 批准号:
9201225 - 财政年份:1992
- 资助金额:
$ 70.28万 - 项目类别:
Continuing Grant
U.S.-Poland Mathematics Research in Algebraic Topology
美国-波兰代数拓扑数学研究
- 批准号:
9020017 - 财政年份:1991
- 资助金额:
$ 70.28万 - 项目类别:
Standard Grant
相似海外基金
Meta-torus: Proposal and assessment of a new topology for massively parallel systems
Meta-torus:大规模并行系统新拓扑的提议和评估
- 批准号:
23K11029 - 财政年份:2023
- 资助金额:
$ 70.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference Proposal: Wasatch Topology Conference
会议提案:Wasatch 拓扑会议
- 批准号:
1822255 - 财政年份:2018
- 资助金额:
$ 70.28万 - 项目类别:
Continuing Grant
EAGER: Renewables: Collaborative Proposal on Stochastic Unit Commitment with Topology Control Recourse for Networks with High Penetration of Distributed Renewable Resources
EAGER:可再生能源:分布式可再生资源高渗透率网络的随机单位承诺与拓扑控制资源的协作提案
- 批准号:
1548847 - 财政年份:2015
- 资助金额:
$ 70.28万 - 项目类别:
Standard Grant
EAGER: Renewables: Collaborative Proposal on Stochastic Unit Commitment with Topology Control Recourse for Networks with High Penetration of Distributed Renewable Resources
EAGER:可再生能源:分布式可再生资源高渗透率网络的随机单位承诺与拓扑控制资源的协作提案
- 批准号:
1549572 - 财政年份:2015
- 资助金额:
$ 70.28万 - 项目类别:
Standard Grant
Conference Proposal: Interactions between Representation Theory, Algebraic Topology and Commutative Algebra
会议提案:表示论、代数拓扑学和交换代数之间的相互作用
- 批准号:
1501399 - 财政年份:2015
- 资助金额:
$ 70.28万 - 项目类别:
Standard Grant
Conference Proposal: Wasatch Topology Conference, August 2014
会议提案:Wasatch 拓扑会议,2014 年 8 月
- 批准号:
1405686 - 财政年份:2014
- 资助金额:
$ 70.28万 - 项目类别:
Standard Grant
Conference Proposal: Geometric Topology in Cortona
会议提案:科尔托纳的几何拓扑
- 批准号:
1313541 - 财政年份:2013
- 资助金额:
$ 70.28万 - 项目类别:
Standard Grant
Proposal for research of computational methods in algebraic topology
代数拓扑计算方法研究提案
- 批准号:
347451-2008 - 财政年份:2008
- 资助金额:
$ 70.28万 - 项目类别:
Postgraduate Scholarships - Master's
Proposal for research of computational methods in algebraic topology
代数拓扑计算方法研究提案
- 批准号:
347451-2007 - 财政年份:2007
- 资助金额:
$ 70.28万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Proposal for a Conference on the Geometry and Topology of Manifolds
关于流形几何和拓扑会议的提案
- 批准号:
0406314 - 财政年份:2004
- 资助金额:
$ 70.28万 - 项目类别:
Standard Grant