Group proposal in topology
拓扑中的组提议
基本信息
- 批准号:0204615
- 负责人:
- 金额:$ 53.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-08-01 至 2006-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS-0204615J. Peter MayThis project deals with research in a wide range of topics in topology, geometry, and related areas of mathematics. May studies a variety of categorical and homotopical structures in stable homotopy theory, equivariant algebraic topology, and other fields. Although his current work is primarily foundational, his students and collaborators, among others, make extensive calculational applications of it. He and his collaborators have recently unified the foundations of stable homotopy theory by proving that all of the new highly structured categories of spectra are Quillen equivalent model categories, via structure-preserving functors. The analogous, and deeper, unification of the foundations of equivariant stable homotopy has also been carried out. Within algebraic topology, May has been working on various other projects in equivariant and non-equivariant homotopy theory. He has also been working on various topics that have roots in algebraic topology but are of a more general nature. In particular, he has recently obtained a new definition of enriched weak $n$-categories and has spearheaded a very large scale unification project in higher category theory. Weinberger studies various areas of geometric topology and differential geometry. He has a longstanding interest in transformation groups, especially surgery theory on manifolds with group actions. In particular, he studies problems concerned with removing the ``gap hypothesis'' that obstructs the direct generalization of the nonequivariant theory. Weinberger also has a longstanding interest in the Novikov, Borel, and Baum-Connes conjectures, and he has made recent progress on them. In a new direction, Weinberger has been engaged in a large scale collaborationwith Nabutovsky that concerns applications of logic to Riemannian variational problems and to the large scale geometry of moduli spaces. Some of his recent results defy easy characterization. For one example, he has applied an old theorem of Browder about finite H-spaces to obtain a theorem about the "social choice problem". For another, in recent work with Farb he has shown that "hidden symmetries"on a locally symmetric manifold force it to be arithmetic.Besides May, the algebraic topology group at Chicago includes four nontenured faculty and eight graduate students. The geometry group includes Weinberger and four other tenured faculty, six nontenured faculty, and fifteen graduate students. There is considerable interactionbetween these groups, and between them and other groups at Chicago, such as the geometric Langlands group and the algebraic geometry group. The research funded by this grant is part of a web of research projects in progress at the University of Chicago.
DMS-0204615J。Peter May这个项目涉及拓扑学,几何学和数学相关领域的广泛主题的研究。梅在稳定同伦理论、等变代数拓扑和其他领域研究了各种范畴和同伦结构。虽然他目前的工作主要是基础性的,但他的学生和合作者,以及其他人,都将其广泛地应用于计算。他和他的合作者最近通过证明所有新的高度结构化的谱范畴都是奎伦等价模型范畴,通过结构保持函子,统一了稳定同伦理论的基础。类似的,更深层次的,统一的基础等变稳定同伦也进行了。在代数拓扑,五月一直致力于各种其他项目的等变和非等变同伦理论。他还一直致力于各种议题,有根源的代数拓扑结构,但更一般的性质。特别是,他最近获得了一个新的定义,丰富的弱$n$-类别,并率先在一个非常大规模的统一项目在更高的范畴理论。温伯格研究几何拓扑学和微分几何的各个领域。他有一个长期的兴趣在转换组,特别是外科理论流形与组行动。特别是,他研究有关消除“间隙假说”,阻碍了直接推广的非等变理论的问题。温伯格也对诺维科夫、博雷尔和鲍姆-康纳斯理论有着长期的兴趣,最近他在这些理论上取得了进展。在一个新的方向,温伯格一直从事大规模的合作与Nabutovsky的关注应用逻辑黎曼变分问题和大规模几何的模空间。他最近的一些成果难以简单描述。例如,他应用了Browder关于有限H-空间的一个老定理来获得关于“社会选择问题”的一个定理。另一方面,在最近的工作与法布,他已经表明,“隐藏的对称性“的局部对称流形的力量,它是算术。除了五月,代数拓扑组在芝加哥包括四个非终身教职员工和八名研究生。几何组包括温伯格和其他四个终身教职员工,六个非终身教职员工,和15名研究生。有相当大的interactionbetween这些团体,他们之间和其他团体在芝加哥,如几何朗兰兹组和代数几何组。这项研究是芝加哥大学正在进行的一系列研究项目的一部分。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
J May其他文献
Tracking latrogenic poisoning fatalities using the American Association of poison control centers toxic exposure surveillance system
- DOI:
10.1016/s0196-0644(99)80192-9 - 发表时间:
1999-10-01 - 期刊:
- 影响因子:
- 作者:
P Wax;J May - 通讯作者:
J May
20 Biography Asish Law
20 传记 阿什·劳
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
D. Jayasimha;Stredney;R. Yagel;S. F. May;M. Torello;Supercomputer Assisted;Brain Visualization;Ray Tracer;Yagel;A. Kaufman;Veznia;P. Fletcher;P. K. Robertson;Ebert;J. Scott;Y. Kurzion;Jayasimha;J May;K. Patel;R. Rao;L. Schwiebert;Keates;R. Hubbold;Schroder;J. B. Salem - 通讯作者:
J. B. Salem
The utilization of the burden nasoscope in nasotracheal intubation: Does it make a difference?
- DOI:
10.1016/s0196-0644(99)80421-1 - 发表时间:
1999-10-01 - 期刊:
- 影响因子:
- 作者:
TC Rock;CK Stone;J May;JS Stapczynski - 通讯作者:
JS Stapczynski
J May的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('J May', 18)}}的其他基金
RTG: Geometry and topology at the University of Chicago
RTG:芝加哥大学的几何和拓扑
- 批准号:
1344997 - 财政年份:2014
- 资助金额:
$ 53.05万 - 项目类别:
Continuing Grant
Topics in Algebraic Topology and Related Areas
代数拓扑及相关领域的主题
- 批准号:
0905789 - 财政年份:2009
- 资助金额:
$ 53.05万 - 项目类别:
Standard Grant
Conference on Category Theory and its Applications in Memory of Saunders MacLane
纪念桑德斯·麦克莱恩范畴论及其应用会议
- 批准号:
0614549 - 财政年份:2006
- 资助金额:
$ 53.05万 - 项目类别:
Standard Grant
University of Chicago's VIGRE Program
芝加哥大学 VIGRE 项目
- 批准号:
0502215 - 财政年份:2005
- 资助金额:
$ 53.05万 - 项目类别:
Continuing Grant
Workshop on n-Categories: Foundations and Applications
n 类别研讨会:基础与应用
- 批准号:
0354538 - 财政年份:2004
- 资助金额:
$ 53.05万 - 项目类别:
Standard Grant
VIGRE: The University of Chicago's Vertical Integration Program
VIGRE:芝加哥大学的垂直整合计划
- 批准号:
9977134 - 财政年份:2000
- 资助金额:
$ 53.05万 - 项目类别:
Continuing Grant
Mathematical Sciences: Group Proposal in Topology
数学科学:拓扑学小组提案
- 批准号:
9423300 - 财政年份:1995
- 资助金额:
$ 53.05万 - 项目类别:
Continuing Grant
Mathematical Sciences: Topics in Topology
数学科学:拓扑主题
- 批准号:
9201225 - 财政年份:1992
- 资助金额:
$ 53.05万 - 项目类别:
Continuing Grant
U.S.-Poland Mathematics Research in Algebraic Topology
美国-波兰代数拓扑数学研究
- 批准号:
9020017 - 财政年份:1991
- 资助金额:
$ 53.05万 - 项目类别:
Standard Grant
相似海外基金
Meta-torus: Proposal and assessment of a new topology for massively parallel systems
Meta-torus:大规模并行系统新拓扑的提议和评估
- 批准号:
23K11029 - 财政年份:2023
- 资助金额:
$ 53.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference Proposal: Wasatch Topology Conference
会议提案:Wasatch 拓扑会议
- 批准号:
1822255 - 财政年份:2018
- 资助金额:
$ 53.05万 - 项目类别:
Continuing Grant
EAGER: Renewables: Collaborative Proposal on Stochastic Unit Commitment with Topology Control Recourse for Networks with High Penetration of Distributed Renewable Resources
EAGER:可再生能源:分布式可再生资源高渗透率网络的随机单位承诺与拓扑控制资源的协作提案
- 批准号:
1548847 - 财政年份:2015
- 资助金额:
$ 53.05万 - 项目类别:
Standard Grant
EAGER: Renewables: Collaborative Proposal on Stochastic Unit Commitment with Topology Control Recourse for Networks with High Penetration of Distributed Renewable Resources
EAGER:可再生能源:分布式可再生资源高渗透率网络的随机单位承诺与拓扑控制资源的协作提案
- 批准号:
1549572 - 财政年份:2015
- 资助金额:
$ 53.05万 - 项目类别:
Standard Grant
Conference Proposal: Interactions between Representation Theory, Algebraic Topology and Commutative Algebra
会议提案:表示论、代数拓扑学和交换代数之间的相互作用
- 批准号:
1501399 - 财政年份:2015
- 资助金额:
$ 53.05万 - 项目类别:
Standard Grant
Conference Proposal: Wasatch Topology Conference, August 2014
会议提案:Wasatch 拓扑会议,2014 年 8 月
- 批准号:
1405686 - 财政年份:2014
- 资助金额:
$ 53.05万 - 项目类别:
Standard Grant
Conference Proposal: Geometric Topology in Cortona
会议提案:科尔托纳的几何拓扑
- 批准号:
1313541 - 财政年份:2013
- 资助金额:
$ 53.05万 - 项目类别:
Standard Grant
Proposal for research of computational methods in algebraic topology
代数拓扑计算方法研究提案
- 批准号:
347451-2008 - 财政年份:2008
- 资助金额:
$ 53.05万 - 项目类别:
Postgraduate Scholarships - Master's
Proposal for research of computational methods in algebraic topology
代数拓扑计算方法研究提案
- 批准号:
347451-2007 - 财政年份:2007
- 资助金额:
$ 53.05万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Proposal for a Conference on the Geometry and Topology of Manifolds
关于流形几何和拓扑会议的提案
- 批准号:
0406314 - 财政年份:2004
- 资助金额:
$ 53.05万 - 项目类别:
Standard Grant














{{item.name}}会员




