Conference Proposal: Interactions between Representation Theory, Algebraic Topology and Commutative Algebra

会议提案:表示论、代数拓扑学和交换代数之间的相互作用

基本信息

  • 批准号:
    1501399
  • 负责人:
  • 金额:
    $ 3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-02-01 至 2016-01-31
  • 项目状态:
    已结题

项目摘要

A research program is to be held at the Centre de Recerca Matematica (CRM) in Barcelona, Spain in the Spring semester of 2015. The focus will be on the intersection between representation theory, algebraic topology, and commutative algebra. There is a long tradition of interaction between commutative algebra and algebraic topology, and commutative algebra and representation theory. Techniques and concepts that arose and were developed in one field have driven developments in the other. Regrettably, opportunities for building and fostering collaborations, especially among graduate students and younger researchers, from the three subjects (or indeed any two of them) have been all too rare, especially in the U.S. The three subjects have witnessed remarkable changes and developments in the last decade, and the CRM program comes at an opportune moment. This NSF award will fund the travel of younger researchers (graduate students, recent PhDs, and junior faculty) at U.S. institutions to participate in some of the key events of the program. This will provide them with a unique opportunity to learn about current research in these fields and the interactions between fields; discuss ideas with one another, and begin collaborations on future research.The topics to be covered by the CRM program, and in particular the advanced courses and workshops: matrix factorizations, maximal Cohen-Macaulay modules; cluster algebras and cluster categories; cohomological theory of support varieties; and tilting theory, to name a few, are at the intersection of several important and rapidly developing areas of mathematics, each subject benefitting from advances in the others. The CRM program will bring together leading researchers in each of these subjects, and one can be optimistic that this will lead to the new insights and developments in them. The highlights of the program include two, week-long, advanced courses, one in February 2015, titled (Re)emerging methods in Commutative Algebra and Representation Theory, and another in April 2015, titled Building bridges between Algebra and Topology. Each will be followed by a week-long workshop. Additionally, a conference is scheduled for 25--29th May, 2015.
一个研究项目将于2015年春季学期在西班牙巴塞罗那的Centre de Recerca Matematica(CRM)举行。重点将放在表示论,代数拓扑和交换代数之间的交叉。交换代数与代数拓扑、交换代数与表示论之间的相互作用有着悠久的传统。在一个领域出现和发展的技术和概念推动了另一个领域的发展。令人遗憾的是,建立和促进合作的机会,特别是在研究生和年轻的研究人员中,从这三个主题(或其中任何两个)都太少了,特别是在美国,这三个主题在过去十年中见证了显着的变化和发展,CRM计划来得正是时候。该NSF奖项将资助美国机构的年轻研究人员(研究生,最近的博士生和初级教师)参加该计划的一些关键活动。这将为他们提供一个独特的机会,了解目前的研究在这些领域和领域之间的相互作用,讨论的想法与彼此,并开始合作对未来的研究。的主题将涵盖的CRM计划,特别是先进的课程和研讨会:矩阵因子分解,最大科恩-麦考利模;集群代数和集群类别;上同调理论的支持品种;和倾斜理论,仅举几例,是在几个重要的和迅速发展的数学领域的交叉点,每一个学科都受益于其他学科的进步。CRM计划将汇集这些学科的领先研究人员,人们可以乐观地认为,这将导致他们的新见解和发展。该计划的亮点包括两个为期一周的高级课程,一个在2015年2月,题为(重新)新兴方法在交换代数和表示理论,另一个在2015年4月,题为代数和拓扑之间的桥梁。每一个都将有一个为期一周的研讨会。此外,会议定于2015年5月25日至29日举行。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Srikanth Iyengar其他文献

Fully Automated Agatston Score Calculation From Electrocardiography-Gated Cardiac Computed Tomography Using Deep Learning and Multi-Organ Segmentation: A Validation Study.
使用深度学习和多器官分割从心电图门控心脏计算机断层扫描全自动计算 Agatston 评分:一项验证研究。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Ashish Gautam;Prashant Raghav;Vijay Subramaniam;Sunil Kumar;Sudeep Kumar;Dharmendra Jain;Ashish Verma;Parminder Singh;Manphoul Singhal;Vikash Gupta;S. Rathore;Srikanth Iyengar;Sudhir Rathore
  • 通讯作者:
    Sudhir Rathore
Class and rank of differential modules THANKSREF="*" ID="*"Research partly supported by NSF grant DMS 0201904 (L.L.A.), NSERC grant 3-642-114-80 (R.O.B.), and NSF grant DMS 0442242 (S.I.).
  • DOI:
    10.1007/s00222-007-0041-6
  • 发表时间:
    2007-03-07
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Luchezar L. Avramov;Ragnar-Olaf Buchweitz;Srikanth Iyengar
  • 通讯作者:
    Srikanth Iyengar

Srikanth Iyengar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Srikanth Iyengar', 18)}}的其他基金

Local Algebra and Local Representation Theory
局部代数和局部表示论
  • 批准号:
    2001368
  • 财政年份:
    2020
  • 资助金额:
    $ 3万
  • 项目类别:
    Continuing Grant
Homological Aspects of Commutative Algebra and Applications to Modular Representation Theory
交换代数的同调方面及其在模表示理论中的应用
  • 批准号:
    1700985
  • 财政年份:
    2017
  • 资助金额:
    $ 3万
  • 项目类别:
    Continuing Grant
Conference Proposal: Geometric and topological aspects of the representation theory of finite groups
会议提案:有限群表示论的几何和拓扑方面
  • 批准号:
    1624050
  • 财政年份:
    2016
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Commutative algebra: homological and homotopical aspects
交换代数:同调和同伦方面
  • 批准号:
    1503044
  • 财政年份:
    2014
  • 资助金额:
    $ 3万
  • 项目类别:
    Continuing Grant
Pan American Advanced Studies Institute: Commutative Algebra and Its Interactions with Algebraic Geometry, Representation Theory, and Physics; Guanajuato, Mexico; May 14-25, 2012
泛美高等研究院:交换代数及其与代数几何、表示论和物理学的相互作用;
  • 批准号:
    1123059
  • 财政年份:
    2012
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Commutative algebra: homological and homotopical aspects
交换代数:同调和同伦方面
  • 批准号:
    1201889
  • 财政年份:
    2012
  • 资助金额:
    $ 3万
  • 项目类别:
    Continuing Grant
Derived categories of complete intersections and Hochschild cohomology
完全交集和 Hochschild 上同调的派生范畴
  • 批准号:
    0903493
  • 财政年份:
    2009
  • 资助金额:
    $ 3万
  • 项目类别:
    Continuing Grant
Derived invariants of commutative rings
交换环的导出不变量
  • 批准号:
    0602498
  • 财政年份:
    2006
  • 资助金额:
    $ 3万
  • 项目类别:
    Continuing Grant
Homological Invariants of Modules Over Commutative Rings
交换环上模的同调不变量
  • 批准号:
    0442242
  • 财政年份:
    2004
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Homological Invariants of Modules Over Commutative Rings
交换环上模的同调不变量
  • 批准号:
    0302892
  • 财政年份:
    2003
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant

相似海外基金

A proposal for estimation of friction pile-unsaturated ground interactions using model test and numerical analysis
利用模型试验和数值分析估计摩擦桩-非饱和地面相互作用的建议
  • 批准号:
    22K14323
  • 财政年份:
    2022
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ECLIPSE/Collaborative Proposal: Studying Microwave-Plasma interactions at Solid Interfaces Using Microwave Microstrip Architectures
ECLIPSE/协作提案:使用微波微带架构研究固体界面处的微波-等离子体相互作用
  • 批准号:
    2206769
  • 财政年份:
    2022
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
ECLIPSE/Collaborative Proposal: Studying Microwave-Plasma Interactions at Solid Interfaces Using Microwave Microstrip Architectures
ECLIPSE/协作提案:使用微波微带架构研究固体界面处的微波-等离子体相互作用
  • 批准号:
    2206546
  • 财政年份:
    2022
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
CRCNS Research Proposal: Network models of cortical and subcortical interactions for dynamical control of decision making
CRCNS 研究提案:用于决策动态控制的皮质和皮质下相互作用的网络模型
  • 批准号:
    2207895
  • 财政年份:
    2022
  • 资助金额:
    $ 3万
  • 项目类别:
    Continuing Grant
Glacier-ocean interactions and sea ice retreat and in the Canadian Arctic Archipelago - Past, present and future Title of proposal For Strategic Projects, indicate the Target Area and the Research
加拿大北极群岛的冰川-海洋相互作用和海冰退缩 - 过去、现在和未来 提案标题 对于战略项目,请指出目标区域和研究
  • 批准号:
    556532-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 3万
  • 项目类别:
    Discovery Grants Program - Ship Time
CRCNS Research Proposal: Computations for spatial-chromatic interactions and their physiological implementation in primary visual cortex
CRCNS 研究提案:空间色彩相互作用的计算及其在初级视觉皮层中的生理实现
  • 批准号:
    2113197
  • 财政年份:
    2021
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Collaborative proposal: GCR: In Search for the Interactions that Create Consciousness
合作提案:GCR:寻找创造意识的互动
  • 批准号:
    2021002
  • 财政年份:
    2020
  • 资助金额:
    $ 3万
  • 项目类别:
    Continuing Grant
RoL: Collaborative Proposal: Integrating responses to environmental change across the biological hierarchy: interactions between behavior, plasticity, and genetic change
RoL:协作提案:整合整个生物层次对环境变化的响应:行为、可塑性和遗传变化之间的相互作用
  • 批准号:
    2024179
  • 财政年份:
    2020
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Collaborative proposal: GCR: In Search for the Interactions that Create Consciousness
合作提案:GCR:寻找创造意识的互动
  • 批准号:
    2021011
  • 财政年份:
    2020
  • 资助金额:
    $ 3万
  • 项目类别:
    Continuing Grant
RoL: Collaborative Proposal: Integrating responses to environmental change across the biological hierarchy: interactions between behavior, plasticity, and genetic change
RoL:协作提案:整合整个生物层次对环境变化的响应:行为、可塑性和遗传变化之间的相互作用
  • 批准号:
    2024109
  • 财政年份:
    2020
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了