Bayes and Empirical Bayes Model Selection

贝叶斯和经验贝叶斯模型选择

基本信息

  • 批准号:
    9803756
  • 负责人:
  • 金额:
    $ 8.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-09-01 至 2001-08-31
  • 项目状态:
    已结题

项目摘要

----------------------------------------------------------------------- Proposal Number: DMS 9803756 PI: Edward I. George Institution: University of Texas Project: Bayes and Empirical Bayes Model Selection Abstract: Bayes and empirical Bayes approaches for model selection are studied, developed and enhanced for a variety of different settings. First of all, theoretical frequentist risk properties of recently discovered empirical Bayes selection criteria are established for the canonical linear model setting. For graphical model selection, connections between frequentist and Bayesian methods are investigated and used to motivate new empirical Bayes methods. For wavelet representations, robust empirical Bayes selection procedures are developed which accommodate heavy tailed noise distributions. For Bayesian CART modeling, new families of structured hierarchical priors are developed. To facilitate and enhance model search, new MCMC algorithms are developed which move across sets of models rather than single models. These algorithms use new transition kernel steps, such as transplantation, which can rapidly traverse the kinds of multimodal model posterior distributions that arise in this context. These algorithms also incorporate stochastic heating and cooling to further increase movement. This research ultimately concerns the development of statistical methods for discovering systematic structure in large multi-variable data sets. This general problem is of substantial importance because of the explosive growth in the technology to collect and analyze such data. Indeed, such large data sets occur naturally in federal strategic areas of national concern including telecommunications, biotechnology, and climatology. A standard statistical approach in such settings is to search for "promising" statistical models within some prespecified, large, flexible class of potential models. Once found, the challenge is to estimate the mod el and draw meaningful inference. These tasks can be especially difficult when the class of potential models is huge, as is typically the case the number of variables is large. The main thrust of this work will be to develop new methods to confront these challenges and broaden the scope of the statistical approach.
- 建议编号:DMS 9803756 PI: 爱德华岛乔治机构: 德克萨斯大学 项目名称: 贝叶斯和经验贝叶斯模型选择 摘要: 研究了贝叶斯和经验贝叶斯模型选择方法, 为各种不同的设置开发和增强。 首先,在典型线性模型下,建立了最近发现的经验贝叶斯选择准则的理论频率论风险性质。 对于图形模型选择,频率论和贝叶斯方法之间的连接进行了研究,并用于激励新的经验贝叶斯方法。 对于小波表示,强大的经验贝叶斯选择程序的开发,以适应重尾噪声分布。 贝叶斯CART建模,新的家庭结构化的层次先验的开发。 为了促进和增强模型搜索,开发了新的MCMC算法,该算法跨模型集而不是单个模型移动。 这些算法采用了移植等新的转换核步骤,能够快速地遍历各种多模态 模型后验分布出现在这种情况下。 这些算法还结合了随机加热和冷却,以进一步增加运动。 这项研究最终涉及的统计方法的发展,发现系统的结构,在大型多变量数据集。由于收集和分析这些数据的技术的爆炸性增长,这个一般问题具有实质性的重要性。 事实上,如此庞大的数据集自然出现在联邦国家关注的战略领域,包括电信、生物技术和气候学。 在这种情况下,一个标准的统计方法是在一些预先指定的、大的、灵活的潜在模型类别中搜索“有希望的”统计模型。 一旦找到,挑战是估计模型并得出有意义的推论。 当潜在模型的类别很大时,这些任务可能特别困难,因为通常情况下变量的数量很大。 这项工作的主旨将是制定新的方法来应对这些挑战,并扩大 统计方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Edward George其他文献

Shellability の obstruction に関する予想について
关于可壳性阻碍的期望
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuzo Maruyama;Edward George;八森正泰
  • 通讯作者:
    八森正泰
Correction to: Working with Misspecified Regression Models
  • DOI:
    10.1007/s10940-020-09464-8
  • 发表时间:
    2020-06-01
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Richard Berk;Lawrence Brown;Andreas Buja;Edward George;Linda Zhao
  • 通讯作者:
    Linda Zhao
The Use of a Noninvasive Respiratory Volume Monitor to Detect and Quantify Obstructive Sleep Apnea in Postoperative Patients
  • DOI:
    10.1378/chest.1702897
  • 发表时间:
    2013-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Christopher Voscopoulos;Diane Ladd;Lisa Campana;Edward George
  • 通讯作者:
    Edward George
Successful management of a morbidly obese patient for electroconvulsive therapy with elective tracheostomy
  • DOI:
    10.1016/j.jclinane.2010.05.009
  • 发表时间:
    2011-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jeremy W. Goldfarb;Edward A. Bittner;Edward George;Charles Welch;Ulrich Schmidt
  • 通讯作者:
    Ulrich Schmidt

Edward George的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Edward George', 18)}}的其他基金

Collaborative Research: Innovations for Bayesian Tree Ensemble Methodology
合作研究:贝叶斯树集成方法的创新
  • 批准号:
    1916245
  • 财政年份:
    2019
  • 资助金额:
    $ 8.72万
  • 项目类别:
    Standard Grant
Participant Support for Attendants to the 11th International Conference on Objective Bayes Methodology
为第十一届客观贝叶斯方法论国际会议的与会者提供的支持
  • 批准号:
    1540663
  • 财政年份:
    2015
  • 资助金额:
    $ 8.72万
  • 项目类别:
    Standard Grant
Advances for Bayesian Model Selection and Inference
贝叶斯模型选择和推理的进展
  • 批准号:
    1406563
  • 财政年份:
    2014
  • 资助金额:
    $ 8.72万
  • 项目类别:
    Standard Grant
High Dimensional Bayesian Model Discovery, Inference and Prediction
高维贝叶斯模型发现、推理和预测
  • 批准号:
    0605102
  • 财政年份:
    2006
  • 资助金额:
    $ 8.72万
  • 项目类别:
    Standard Grant
Bayesian Formulations for Model Uncertainty
模型不确定性的贝叶斯公式
  • 批准号:
    0130819
  • 财政年份:
    2001
  • 资助金额:
    $ 8.72万
  • 项目类别:
    Standard Grant
Variable Selection and Related Problems
变量选择及相关问题
  • 批准号:
    9404408
  • 财政年份:
    1994
  • 资助金额:
    $ 8.72万
  • 项目类别:
    Continuing Grant
U.S.-Brazil Cooperative Science Program: International Workshop on Hierarchical Modeling; Rio de Janeiro, Brazil; August 1993
美国-巴西合作科学计划:层次建模国际研讨会;
  • 批准号:
    9302267
  • 财政年份:
    1993
  • 资助金额:
    $ 8.72万
  • 项目类别:
    Standard Grant

相似海外基金

Reconstruction of empirical model for promotion/inhibition of autonomous and appropriate consumption and continuous consumption behavior
自主适度消费与持续消费行为促进/抑制实证模型重构
  • 批准号:
    23K01651
  • 财政年份:
    2023
  • 资助金额:
    $ 8.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Policy Formation and Interorganizational Relation - An Empirical Study Using the New Policy Window Model
政策形成与组织间关系——利用新政策窗口模型的实证研究
  • 批准号:
    23K01555
  • 财政年份:
    2023
  • 资助金额:
    $ 8.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
An Empirical Study on a Behavioral Model for Invoking the Potential Demand of Micro-Tourism through the Provision of Behavior Change Triggers
通过提供行为改变触发因素激发微旅游潜在需求的行为模型实证研究
  • 批准号:
    23K11632
  • 财政年份:
    2023
  • 资助金额:
    $ 8.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Re-evaluation of the model of population extinction in stream salmonids by global warming: an empirical study focusing on the temperature-dependent interspecific competition
全球变暖导致溪流鲑鱼种群灭绝模型的重新评估:一项关注温度依赖性种间竞争的实证研究
  • 批准号:
    22KJ0130
  • 财政年份:
    2023
  • 资助金额:
    $ 8.72万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Empirical determination of the interaction landscape for temperature, CO2 and nitrate for a model diatom
硅藻模型温度、CO2 和硝酸盐相互作用景观的实证测定
  • 批准号:
    NE/X001237/1
  • 财政年份:
    2023
  • 资助金额:
    $ 8.72万
  • 项目类别:
    Research Grant
An empirical model to predict geo-magnetic storms at Earth.
预测地球地磁风暴的经验模型。
  • 批准号:
    2645882
  • 财政年份:
    2022
  • 资助金额:
    $ 8.72万
  • 项目类别:
    Studentship
Building an empirical model for the network effects of brain stimulation
建立大脑刺激网络效应的经验模型
  • 批准号:
    473569
  • 财政年份:
    2022
  • 资助金额:
    $ 8.72万
  • 项目类别:
    Fellowship Programs
Theory and Applications of the empirical likelihood and finite mixture model
经验似然和有限混合模型的理论与应用
  • 批准号:
    RGPIN-2019-04204
  • 财政年份:
    2022
  • 资助金额:
    $ 8.72万
  • 项目类别:
    Discovery Grants Program - Individual
Catalyzing virtuous cycles of climate action: an empirical model of polycentric climate governance
催化气候行动的良性循环:多中心气候治理的经验模型
  • 批准号:
    2216592
  • 财政年份:
    2022
  • 资助金额:
    $ 8.72万
  • 项目类别:
    Continuing Grant
An empirical framework, methodology and model to evaluate the potential environmental, social, and economic performance contributions of mass timber construction to sustainable development in Canada
评估大规模木结构建筑对加拿大可持续发展的潜在环境、社会和经济绩效贡献的实证框架、方法和模型
  • 批准号:
    558961-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 8.72万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了