Spatio-Temporal Statistical Signal Processing For Blind Equalization and Source Separation

用于盲均衡和源分离的时空统计信号处理

基本信息

  • 批准号:
    9803850
  • 负责人:
  • 金额:
    $ 6.29万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-09-01 至 2002-08-31
  • 项目状态:
    已结题

项目摘要

This research is concerned with analysis and processing of stochastic signals received at multiple sensors from multiple sources with focus on blind equalization of digital communications signals and on blind separation of convolutive mixtures of independent sources (signals). Multiple-input multiple-output (MIMO) models of digital communication systems arise in a wide variety of communications applications: high-speed digital subscriber lines, multi-track digital magnetic recording, multiuser/multi-access communications systems, digital radio with diversity, dually polarized radio channels, multisensor sonar/radar systems, etc. MIMO channel modeling allows for a unified and optimal approach to design of MIMO equalizers/filters/combiners for suppression of intersymbol interference (ISI), cochannel and adjacent channel interferences (CCI and ACI) and multi-access interferences (MAI). State-of-the-art in this area requires complete knowledge of the MIMO transfer function which is unrealistic for practical communication systems. In MIMO systems the training sequences must also be provided by the interference-generating sources: an utterly unrealistic assumption. One of the goals of this research program is to provide more practical answers to the above problems of great practical importance by removing the need for training sequences for adaptive multichannel equalizer design. Both second-order statistics-based and higher-order statistics-based approaches are being investigated with emphasis on the former. Emphasis is on approaches that require as few assumptions as possible compared to existing literature, e.g. common zeros among the subchannels are allowed, the channel matrix impulse response can be infinitely long, etc. The results of the proposed research on blind source separation are expected to be useful to scientists and engineers engaged in processing and analysis of multisensor data in a broad class of applications such as sonar, radar, acoustic array ap plications and monitoring of power plants and civil works. The work on blind equalization is expected to result in effective and computationally efficient algorithms for signal processing in a broad class of digital communication systems such as high-speed digital subscriber lines, multi-track digital magnetic recording and multiuser wireless communications.
本研究关注的是分析和处理的随机信号接收在多个传感器从多个来源,重点是数字通信信号的盲均衡和独立源(信号)的卷积混合的盲分离。 数字通信系统的多输入多输出(MIMO)模型出现在各种各样的通信应用中:高速数字用户线路、多磁道数字磁记录、多用户/多址通信系统、具有分集的数字无线电、双极化无线电信道、多传感器声纳/雷达系统MIMO信道建模允许统一且最佳的方法来设计用于抑制符号间干扰(ISI)的MIMO均衡器/滤波器/组合器,同信道和相邻信道干扰(CCI和ACI)以及多址干扰(MAI)。该领域的最新技术要求完整地了解MIMO传递函数,这对于实际通信系统是不现实的。 在MIMO系统中,训练序列也必须由干扰产生源提供:这是一个完全不切实际的假设。本研究计划的目标之一是通过消除对自适应多通道均衡器设计的训练序列的需要,为上述具有重要实际意义的问题提供更实际的答案。二阶和高阶的基于代数的方法正在研究与重点放在前者。重点是与现有文献相比需要尽可能少的假设的方法,例如,允许子信道之间的公共零点,信道矩阵冲激响应可以无限长,盲源分离的研究结果对从事多传感器数据处理和分析的科学家和工程师有着广泛的应用前景例如声纳、雷达、声学阵列应用以及发电厂和土木工程的监测。盲均衡的工作有望为诸如高速数字用户线、多磁道数字磁记录和多用户无线通信等广泛的数字通信系统中的信号处理产生有效的和计算效率高的算法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jitendra Tugnait其他文献

An Edge Exclusion Test for Complex Gaussian Graphical Model Selection
复杂高斯图形模型选择的边缘排除测试
Adaptive estimation and identification for discrete systems with Markov jump parameters
Sparse Graph Learning Under Laplacian-Related Constraints
  • DOI:
    10.1109/access.2021.3126675
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Jitendra Tugnait
  • 通讯作者:
    Jitendra Tugnait
On Multisensor Detection of Improper Signals
Blind equalization and estimation of digital communication FIR channels using cumulant matching

Jitendra Tugnait的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jitendra Tugnait', 18)}}的其他基金

CIF:Small:Learning Sparse Vector and Matrix Graphs from Time-Dependent Data
CIF:小:从瞬态数据中学习稀疏向量和矩阵图
  • 批准号:
    2308473
  • 财政年份:
    2023
  • 资助金额:
    $ 6.29万
  • 项目类别:
    Standard Grant
EAGER: Learning Graphical Models of High-Dimensional Time Series
EAGER:学习高维时间序列的图形模型
  • 批准号:
    2040536
  • 财政年份:
    2020
  • 资助金额:
    $ 6.29万
  • 项目类别:
    Standard Grant
EAGER: Detection and Mitigation of Pilot Contamination Attacks and Related Issues in Massive MIMO Systems
EAGER:大规模 MIMO 系统中导频污染攻击及相关问题的检测和缓解
  • 批准号:
    1651133
  • 财政年份:
    2016
  • 资助金额:
    $ 6.29万
  • 项目类别:
    Standard Grant
CIF: Small: Complex-Valued Statistical Signal Processing with Dependent Data
CIF:小型:具有相关数据的复值统计信号处理
  • 批准号:
    1617610
  • 财政年份:
    2016
  • 资助金额:
    $ 6.29万
  • 项目类别:
    Standard Grant
Using the Channel State Information for Wireless Security Enhancement
使用信道状态信息增强无线安全性
  • 批准号:
    0823987
  • 财政年份:
    2008
  • 资助金额:
    $ 6.29万
  • 项目类别:
    Standard Grant
Estimation of MIMO Wireless Communications Channels: Approaches and Applications
MIMO 无线通信信道估计:方法和应用
  • 批准号:
    0424145
  • 财政年份:
    2004
  • 资助金额:
    $ 6.29万
  • 项目类别:
    Continuing Grant
Frequency-Domain Approaches to Identification of Multiple-Input Multiple-Output Systems Given Time-Domain Data
给定时域数据的多输入多输出系统辨识的频域方法
  • 批准号:
    9912523
  • 财政年份:
    2000
  • 资助金额:
    $ 6.29万
  • 项目类别:
    Standard Grant
Frequency-Domain Approaches To Control-Relevant System Identification
控制相关系统辨识的频域方法
  • 批准号:
    9504878
  • 财政年份:
    1995
  • 资助金额:
    $ 6.29万
  • 项目类别:
    Standard Grant
Higher Order Statistical Signal and Image Processing and Analysis
高阶统计信号和图像处理与分析
  • 批准号:
    9312559
  • 财政年份:
    1994
  • 资助金额:
    $ 6.29万
  • 项目类别:
    Continuing Grant
Blind Equalization and Channel Estimation in Data Communication Systems
数据通信系统中的盲均衡和信道估计
  • 批准号:
    9015587
  • 财政年份:
    1991
  • 资助金额:
    $ 6.29万
  • 项目类别:
    Continuing Grant

相似海外基金

Spatio-temporal Chain Event Graphs for translating expert judgement into complex statistical models. (Ref:4659)
时空链事件图,用于将专家判断转化为复杂的统计模型。
  • 批准号:
    2859564
  • 财政年份:
    2023
  • 资助金额:
    $ 6.29万
  • 项目类别:
    Studentship
Big Data Modeling via Moment-Based Methodologies and the Statistical Analysis of Spatio-Temporal Measurements
通过基于矩的方法进行大数据建模以及时空测量的统计分析
  • 批准号:
    RGPIN-2019-06323
  • 财政年份:
    2022
  • 资助金额:
    $ 6.29万
  • 项目类别:
    Discovery Grants Program - Individual
Big Data Modeling via Moment-Based Methodologies and the Statistical Analysis of Spatio-Temporal Measurements
通过基于矩的方法进行大数据建模以及时空测量的统计分析
  • 批准号:
    RGPIN-2019-06323
  • 财政年份:
    2021
  • 资助金额:
    $ 6.29万
  • 项目类别:
    Discovery Grants Program - Individual
Spatio temporal statistical models to improve short term rain forecasts
改善短期降雨预报的时空统计模型
  • 批准号:
    2605380
  • 财政年份:
    2021
  • 资助金额:
    $ 6.29万
  • 项目类别:
    Studentship
Big Data Modeling via Moment-Based Methodologies and the Statistical Analysis of Spatio-Temporal Measurements
通过基于矩的方法进行大数据建模以及时空测量的统计分析
  • 批准号:
    RGPIN-2019-06323
  • 财政年份:
    2020
  • 资助金额:
    $ 6.29万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Approaches for Spatio-Temporal Stochastic Population Models
时空随机总体模型的统计方法
  • 批准号:
    2015273
  • 财政年份:
    2020
  • 资助金额:
    $ 6.29万
  • 项目类别:
    Standard Grant
ATD: Next Generation Statistical Learning Theory and Methods for Multimodal Spatio-Temporal Data with Application to Computer Vision
ATD:下一代多模态时空数据统计学习理论和方法及其在计算机视觉中的应用
  • 批准号:
    1924724
  • 财政年份:
    2019
  • 资助金额:
    $ 6.29万
  • 项目类别:
    Standard Grant
Developing efficient statistical tools for problems arising in spatio-temporal modelling
为时空建模中出现的问题开发有效的统计工具
  • 批准号:
    2279484
  • 财政年份:
    2019
  • 资助金额:
    $ 6.29万
  • 项目类别:
    Studentship
Touristic travel behaviour in a spatio-temporal context: Statistical analyses for the identification and development of tourists’ behavioural patterns
时空背景下的旅游行为:用于识别和发展游客行为模式的统计分析
  • 批准号:
    417192137
  • 财政年份:
    2019
  • 资助金额:
    $ 6.29万
  • 项目类别:
    Research Grants
Statistical study on the establishment of the basis for a spatio-temporal model-based method of analysing fisheries resources.
为基于时空模型的渔业资源分析方法奠定基础的统计研究。
  • 批准号:
    19K11855
  • 财政年份:
    2019
  • 资助金额:
    $ 6.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了