EAGER: Detection and Mitigation of Pilot Contamination Attacks and Related Issues in Massive MIMO Systems
EAGER:大规模 MIMO 系统中导频污染攻击及相关问题的检测和缓解
基本信息
- 批准号:1651133
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-10-01 至 2019-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Mobile data traffic continues to grow at an exponential rate. To meet this data challenge, massive MIMO (multiple-input multiple-output) system technology has recently been proposed where the base station employs a large number of antennas, allowing many users to be served simultaneously. It is regarded as one of the key enablers of future 5G wireless systems. While recent prototypes have demonstrated its feasibility, many significant research challenges remain to be addressed before massive MIMO can be deployed. Successful operation of massive MIMO depends critically on knowledge of the channel state information between the base station and the end users. In practice this would be acquired during the training phase where the users send individual pilot signals to the base station. This phase is challenging due to a large number of end users which lead to pilot reuse causing pilot contamination, and due to vulnerability to attacks by malicious eavesdroppers who may spoof legitimate users by transmitting identical pilot signals. This project is focused on methods to detect and defend against pilot contamination attacks. Innovative approaches to detect and defend against pilot contamination attacks from active eavesdroppers as well as from spoofing relays are investigated in this research. A key transformative idea introduced is that of self-contamination of pilot sequences by legitimate users to facilitate detection of active eavesdroppers. This project explores various ramifications of this idea in the context of the following research thrusts. (1) Detection of pilot contamination attacks by active eavesdroppers: Assuming the knowledge of the set of training sequences (and nothing else), can one detect whether one or more training sequences are under attack. Source enumeration methods based on data correlation function are being exploited. (2) Joint acquisition of channel state information for both legitimate users and eavesdroppers to facilitate effective beamforming designs to enhance reception at legitimate users while degrading reception at eavesdroppers. (3) Detection and mitigation of active eavesdropping via spoofing relay attack where a spoofing relay operates in a full-duplex mode and simply amplifies and forwards the signal from a legitimate user to the base station in a time-division duplex uplink operation.
移动数据流量继续以指数级速度增长。为了应对这种数据挑战,最近提出了大规模MIMO(多输入多输出)系统技术,其中基站使用大量的天线,允许同时为多个用户服务。它被认为是未来5G无线系统的关键推动因素之一。虽然最近的原型已经证明了它的可行性,但在大规模MIMO得以部署之前,仍有许多重大的研究挑战需要解决。大规模MIMO的成功运行关键依赖于对基站和终端用户之间的信道状态信息的了解。实际上,这将在训练阶段期间获得,其中用户向基站发送单独的导频信号。这一阶段具有挑战性,因为大量终端用户导致导频重复使用,导致导频污染,并且易受恶意窃听者的攻击,恶意窃听者可能通过传输相同的导频信号来欺骗合法用户。该项目的重点是检测和防御飞行员污染攻击的方法。本文研究了检测和防御来自主动窃听者和欺骗中继器的飞行员污染攻击的创新方法。引入的一个关键的变革性想法是合法用户对导频序列的自我污染,以便于检测活跃的窃听者。本项目在以下研究推进的背景下探索了这一想法的各种后果。(1)主动窃听者对飞行员污染攻击的检测:假设已知训练序列集(而不是其他任何知识),则可以检测到是否有一个或多个训练序列受到攻击。正在开发基于数据关联函数的源枚举方法。(2)联合获取合法用户和窃听者的信道状态信息,以促进有效的波束成形设计,以增强合法用户的接收,同时降低窃听者的接收。(3)通过欺骗中继攻击检测和缓解主动窃听,其中欺骗中继以全双工模式操作,并且在时分双工上行链路操作中简单地放大并将来自合法用户的信号转发到基站。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Pilot decontamination under imperfect power control
- DOI:10.1109/acssc.2017.8335513
- 发表时间:2017-10
- 期刊:
- 影响因子:0
- 作者:Jitendra Tugnait
- 通讯作者:Jitendra Tugnait
Detection of Pilot Spoofing Attack Over Frequency Selective Channels
- DOI:10.1109/ssp.2018.8450703
- 发表时间:2018-06
- 期刊:
- 影响因子:0
- 作者:Jitendra Tugnait
- 通讯作者:Jitendra Tugnait
On Mitigation of Active Eavesdropping Attack by Spoofing Relay
- DOI:10.1109/vtcspring.2017.8108518
- 发表时间:2017-06
- 期刊:
- 影响因子:0
- 作者:Jitendra Tugnait
- 通讯作者:Jitendra Tugnait
Pilot Spoofing Attack Detection and Countermeasure
- DOI:10.1109/tcomm.2018.2797989
- 发表时间:2018-01
- 期刊:
- 影响因子:8.3
- 作者:Jitendra Tugnait
- 通讯作者:Jitendra Tugnait
Detection and mitigation of pilot spoofing attack
- DOI:10.1109/acssc.2017.8335643
- 发表时间:2017-10
- 期刊:
- 影响因子:0
- 作者:Jitendra Tugnait
- 通讯作者:Jitendra Tugnait
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jitendra Tugnait其他文献
An Edge Exclusion Test for Complex Gaussian Graphical Model Selection
复杂高斯图形模型选择的边缘排除测试
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Jitendra Tugnait - 通讯作者:
Jitendra Tugnait
On Multisensor Detection of Improper Signals
- DOI:
10.1109/tsp.2018.2887404 - 发表时间:
2019-02 - 期刊:
- 影响因子:5.4
- 作者:
Jitendra Tugnait - 通讯作者:
Jitendra Tugnait
Adaptive estimation and identification for discrete systems with Markov jump parameters
- DOI:
10.1109/cdc.1981.269444 - 发表时间:
1981-12 - 期刊:
- 影响因子:0
- 作者:
Jitendra Tugnait - 通讯作者:
Jitendra Tugnait
Sparse Graph Learning Under Laplacian-Related Constraints
- DOI:
10.1109/access.2021.3126675 - 发表时间:
2021-11 - 期刊:
- 影响因子:3.9
- 作者:
Jitendra Tugnait - 通讯作者:
Jitendra Tugnait
Blind equalization and estimation of digital communication FIR channels using cumulant matching
- DOI:
10.1109/acssc.1992.269100 - 发表时间:
1992-10 - 期刊:
- 影响因子:0
- 作者:
Jitendra Tugnait - 通讯作者:
Jitendra Tugnait
Jitendra Tugnait的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jitendra Tugnait', 18)}}的其他基金
CIF:Small:Learning Sparse Vector and Matrix Graphs from Time-Dependent Data
CIF:小:从瞬态数据中学习稀疏向量和矩阵图
- 批准号:
2308473 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: Learning Graphical Models of High-Dimensional Time Series
EAGER:学习高维时间序列的图形模型
- 批准号:
2040536 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CIF: Small: Complex-Valued Statistical Signal Processing with Dependent Data
CIF:小型:具有相关数据的复值统计信号处理
- 批准号:
1617610 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Using the Channel State Information for Wireless Security Enhancement
使用信道状态信息增强无线安全性
- 批准号:
0823987 - 财政年份:2008
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Estimation of MIMO Wireless Communications Channels: Approaches and Applications
MIMO 无线通信信道估计:方法和应用
- 批准号:
0424145 - 财政年份:2004
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Frequency-Domain Approaches to Identification of Multiple-Input Multiple-Output Systems Given Time-Domain Data
给定时域数据的多输入多输出系统辨识的频域方法
- 批准号:
9912523 - 财政年份:2000
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Spatio-Temporal Statistical Signal Processing For Blind Equalization and Source Separation
用于盲均衡和源分离的时空统计信号处理
- 批准号:
9803850 - 财政年份:1998
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Frequency-Domain Approaches To Control-Relevant System Identification
控制相关系统辨识的频域方法
- 批准号:
9504878 - 财政年份:1995
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Higher Order Statistical Signal and Image Processing and Analysis
高阶统计信号和图像处理与分析
- 批准号:
9312559 - 财政年份:1994
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Blind Equalization and Channel Estimation in Data Communication Systems
数据通信系统中的盲均衡和信道估计
- 批准号:
9015587 - 财政年份:1991
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
SaTC: CORE: Small: Automatic Exploits Detection and Mitigation for Industrial Control System Protocols
SaTC:核心:小型:工业控制系统协议的自动漏洞检测和缓解
- 批准号:
2345563 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
New Interference Detection, Mitigation, and Fusion Methodologies for Radio Astronomy
射电天文学的新干扰检测、缓解和融合方法
- 批准号:
2307581 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Towards Effective Detection and Mitigation for Shortcut Learning: A Data Modeling Framework
协作研究:III:媒介:针对捷径学习的有效检测和缓解:数据建模框架
- 批准号:
2310262 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Towards Effective Detection and Mitigation for Shortcut Learning: A Data Modeling Framework
协作研究:III:媒介:针对捷径学习的有效检测和缓解:数据建模框架
- 批准号:
2310261 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Towards Effective Detection and Mitigation for Shortcut Learning: A Data Modeling Framework
协作研究:III:媒介:针对捷径学习的有效检测和缓解:数据建模框架
- 批准号:
2310260 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
NSF-BSF: SaTC: CORE: Small: Prevention, Detection and Mitigation for Secure Interdomain Routing
NSF-BSF:SaTC:CORE:小型:安全域间路由的预防、检测和缓解
- 批准号:
2247810 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
CRII: SaTC: Backdoor Detection, Mitigation, and Prevention in Deep Neural Networks
CRII:SaTC:深度神经网络中的后门检测、缓解和预防
- 批准号:
2153358 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Climate Monitoring and Decision Support Framework for Sand Fly-borne Diseases Detection and Mitigation with COst-benefit and Climate-policy MeasureS
沙蝇传播疾病检测和缓解的气候监测和决策支持框架,具有成本效益和气候政策措施
- 批准号:
10039289 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
EU-Funded
CLIMOS - Climate Monitoring and Decision Support Framework for Sand Fly-borne Diseases Detection and Mitigation with COst-benefit and Climate-policy MeasureS
CLIMOS - 用于沙蝇传播疾病检测和缓解的气候监测和决策支持框架,具有成本效益和气候政策措施
- 批准号:
10038150 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
EU-Funded
Fault Detection and Mitigation for Connected Autonomous Vehicles Using Output Measurements Only Market Assessment
仅使用输出测量的联网自动驾驶汽车的故障检测和缓解市场评估
- 批准号:
576537-2022 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Idea to Innovation