Tunnel Numbers, Heegaard Genus and Generalized Primality
隧道数、Heegaard 属和广义素性
基本信息
- 批准号:9803826
- 负责人:
- 金额:$ 7.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-08-15 至 2001-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9803826 Schultens This research project concerns the relation of Heegaard splittings to manifold decompositions, a relation that has been studied in a particular case under the guise of tunnel numbers of knots. The tunnel number of a knot has been shown to behave quite erratically under the operation of connected sum of knots. The project entails a more general investigation into the role of incompressible surfaces as they relate to Heegaard splittings. In particular, it should provide information on (1) lower bounds of the tunnel number of knots relative to their generalized prime decompositions; (2) bounds on the degeneration of tunnel number under connected sum of knots; (3) torus decompositions of manifolds; (4) the Heegaard genus of Haken manifolds; and (5) stabilization problems. The general philosophy of this project stems from a realization that 3-dimensional manifolds have been studied from several viewpoints. Two of these viewpoints involve cutting the 3-manifold along surfaces into basic building blocks. The idea of cutting along a surface to understand the 3-manifold in which the surface lies, is a natural extension of the idea of cutting along circles to understand the surface in which the circles lie. In the case of surfaces, the analysis of the circles contained in the surface suffices to characterize the surface. A complete classification has been obtained. 3-manifolds have proven to be far less tractable objects. In fact, extending the idea that has been so successful for the analysis of surfaces has engendered two very different viewpoints in the study of 3-manifolds. The investigator endeavors to reconcile these two viewpoints. ***
小行星9803826 这个研究项目涉及Heegaard分裂流形分解的关系,在一个特定的情况下,已经研究了隧道数的幌子下的结的关系。 纽结的隧道数在纽结的连通和运算下表现得相当不稳定。 该项目需要一个更一般的调查不可压缩表面的作用,因为它们涉及到Heegaard分裂。 特别是,它应该提供以下信息:(1)相对于广义素分解的纽结隧道数的下界;(2)纽结连通和下隧道数退化的界;(3)流形的环面分解;(4)哈肯流形的Heegaard亏格;(5)稳定化问题。 这个项目的一般理念源于对三维流形已经从几个角度进行了研究的认识。 这些观点中的两个涉及到将3-流形沿着表面切割成基本的构建块。 沿着沿着曲面切割以理解曲面所在的三维流形的思想,是沿着沿着圆切割以理解圆所在的曲面的思想的自然延伸。 在曲面的情况下,对曲面中包含的圆的分析足以表征曲面。 得到了一个完整的分类。 3-流形已经被证明是远不容易处理的对象。 事实上,扩展的想法,已经如此成功的分析曲面已经产生了两个非常不同的观点,在研究三维流形。 调查员努力调和这两种观点。 ***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer Schultens其他文献
Band sums and concordance of knots
- DOI:
10.1007/s40590-025-00722-y - 发表时间:
2025-03-10 - 期刊:
- 影响因子:0.800
- 作者:
Jennifer Schultens - 通讯作者:
Jennifer Schultens
Jennifer Schultens的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer Schultens', 18)}}的其他基金
Knots, Heegaard Splittings and Width Complexes
结、Heegaard 裂口和宽度复合体
- 批准号:
0603736 - 财政年份:2006
- 资助金额:
$ 7.56万 - 项目类别:
Continuing Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
- 批准号:
9508958 - 财政年份:1995
- 资助金额:
$ 7.56万 - 项目类别:
Fellowship Award
相似海外基金
RTG: Numbers, Geometry, and Symmetry at Berkeley
RTG:伯克利分校的数字、几何和对称性
- 批准号:
2342225 - 财政年份:2024
- 资助金额:
$ 7.56万 - 项目类别:
Continuing Grant
Class numbers and discriminants: algebraic and analytic number theory meet
类数和判别式:代数和解析数论的结合
- 批准号:
DP240100186 - 财政年份:2024
- 资助金额:
$ 7.56万 - 项目类别:
Discovery Projects
Assessment of IUCN Red Listed Barbary macaque population health and numbers following multiple natural disasters within Morocco
对摩洛哥境内多次自然灾害后世界自然保护联盟红色名录巴巴里猕猴种群健康和数量的评估
- 批准号:
NE/Y00647X/1 - 财政年份:2024
- 资助金额:
$ 7.56万 - 项目类别:
Research Grant
Computability and the absolute Galois group of the rational numbers
可计算性和有理数的绝对伽罗瓦群
- 批准号:
2348891 - 财政年份:2024
- 资助金额:
$ 7.56万 - 项目类别:
Continuing Grant
CAREER: KKM-Type Theorems for Piercing Numbers, Mass Partition, and Fair Division
职业:刺穿数、质量划分和公平除法的 KKM 型定理
- 批准号:
2336239 - 财政年份:2024
- 资助金额:
$ 7.56万 - 项目类别:
Continuing Grant
Pseudorandom numbers and algebraic studies on related mathematical structures
伪随机数及相关数学结构的代数研究
- 批准号:
23K03033 - 财政年份:2023
- 资助金额:
$ 7.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: High fidelity numerical simulations of turbulent flow separation at high Reynolds numbers with passive scalar transport.
职业:采用被动标量传输的高雷诺数湍流分离的高保真度数值模拟。
- 批准号:
2314303 - 财政年份:2023
- 资助金额:
$ 7.56万 - 项目类别:
Standard Grant
RESEARCH-PGR: Atomic Numbers: Identifying the conserved genes driving element accumulation in plants
研究-PGR:原子序数:识别驱动植物元素积累的保守基因
- 批准号:
2309932 - 财政年份:2023
- 资助金额:
$ 7.56万 - 项目类别:
Continuing Grant
Regulation of Overall Cell Numbers During Epithelial Tissue Homeostasis and Pathogenesis
上皮组织稳态和发病机制中总细胞数量的调节
- 批准号:
10621985 - 财政年份:2023
- 资助金额:
$ 7.56万 - 项目类别:
Problems in the Geometry of Numbers and Diophantine Analysis
数几何问题和丢番图分析
- 批准号:
2327098 - 财政年份:2023
- 资助金额:
$ 7.56万 - 项目类别:
Standard Grant