RTG: Numbers, Geometry, and Symmetry at Berkeley

RTG:伯克利分校的数字、几何和对称性

基本信息

  • 批准号:
    2342225
  • 负责人:
  • 金额:
    $ 249.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-08-01 至 2029-07-31
  • 项目状态:
    未结题

项目摘要

The project will involve a variety of activities organized around the research groups in number theory, geometry, and representation theory at UC Berkeley. These subjects study the structure and symmetries of mathematical equations, and have applications to (for example) cryptography, codes, signal processing, and physics. There will be an emphasis on training graduate students to contribute to society as scientists, educators, and mentors. More precisely, RTG will be used to organize annual graduate research workshops, with external experts, as well as weekly research seminars to keep up-to-date on cutting-edge developments. Summer programs on Research Experiences of Undergraduates will provide valuable research exposure to undergraduates, and also mentorship training to graduate students. Postdocs will be hired to help lead these activities. Finally, the project will fund outreach to local schools. At the core of all these activities is the goal of training students and postdocs as strong workforce in their dual roles as mentors and mentees, recruiting students into the field with a good representation of underrepresented groups, and providing a setting for collaboration between all levels and across different areas.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将涉及各种活动,围绕在加州大学伯克利分校的数论,几何和表示理论的研究小组组织。这些科目研究数学方程的结构和对称性,并应用于(例如)密码学,代码,信号处理和物理学。将重点培养研究生作为科学家,教育家和导师为社会做出贡献。更确切地说,RTG将用于组织年度研究生研究研讨会,与外部专家,以及每周的研究研讨会,以保持最新的前沿发展。本科生暑期研究经验课程将为本科生提供宝贵的研究经验,并为研究生提供导师培训。博士后将被雇用来帮助领导这些活动。最后,该项目将资助对当地学校的宣传。在所有这些活动的核心是培养学生和博士后作为强大的劳动力在他们的双重角色作为导师和学员的目标,招募学生到外地与代表性不足的群体的良好代表,该奖项反映了NSF的法定使命,并通过使用基金会的知识产权进行评估,被认为值得支持。优点和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tony Feng其他文献

Geometric Langlands Duality for Periods
  • DOI:
    10.1007/s00039-025-00702-4
  • 发表时间:
    2025-02-06
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Tony Feng;Jonathan Wang
  • 通讯作者:
    Jonathan Wang
The Galois action on symplectic K-theory
辛 K 理论的伽罗瓦作用
  • DOI:
    10.1007/s00222-022-01127-8
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Tony Feng;Søren Galatius;Akshay Venkatesh
  • 通讯作者:
    Akshay Venkatesh
Smith theory and cyclic base change functoriality
史密斯理论和循环基变函子性
EXTENSIONS OF VECTOR BUNDLES ON THE FARGUES-FONTAINE CURVE
法尔格-方丹曲线上向量丛的扩展
Equivariant localization, parity sheaves, and cyclic base change functoriality.
等变定位、奇偶滑轮和循环基变函子性。
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tony Feng
  • 通讯作者:
    Tony Feng

Tony Feng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tony Feng', 18)}}的其他基金

Homotopical Methods in Arithmetic Geometry
算术几何中的同伦方法
  • 批准号:
    2302520
  • 财政年份:
    2023
  • 资助金额:
    $ 249.41万
  • 项目类别:
    Standard Grant
Postdoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1902927
  • 财政年份:
    2019
  • 资助金额:
    $ 249.41万
  • 项目类别:
    Fellowship Award

相似海外基金

Problems in the Geometry of Numbers and Diophantine Analysis
数几何问题和丢番图分析
  • 批准号:
    2327098
  • 财政年份:
    2023
  • 资助金额:
    $ 249.41万
  • 项目类别:
    Standard Grant
Geometry, Algebra, and Topology of Face Numbers
面数的几何、代数和拓扑
  • 批准号:
    1953815
  • 财政年份:
    2020
  • 资助金额:
    $ 249.41万
  • 项目类别:
    Standard Grant
Problems in the Geometry of Numbers and Diophantine Analysis
数几何问题和丢番图分析
  • 批准号:
    2001281
  • 财政年份:
    2020
  • 资助金额:
    $ 249.41万
  • 项目类别:
    Standard Grant
Higgs bundles and dessins d'enfants: new pathways between geometry, physics, and numbers
希格斯粒子束和儿童设计:几何、物理和数字之间的新途径
  • 批准号:
    527709-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 249.41万
  • 项目类别:
    University Undergraduate Student Research Awards
CAREER: Entropy in dynamics: connections with geometry, algebraic numbers, and bioscience
职业:动力学中的熵:与几何、代数数和生物科学的联系
  • 批准号:
    1454864
  • 财政年份:
    2015
  • 资助金额:
    $ 249.41万
  • 项目类别:
    Continuing Grant
Combinatorics, algebra, and geometry of face numbers
面数的组合学、代数和几何
  • 批准号:
    1361423
  • 财政年份:
    2014
  • 资助金额:
    $ 249.41万
  • 项目类别:
    Continuing Grant
Open problems in geometry of numbers, and the geometry of quantum phases
数几何和量子相几何中的未决问题
  • 批准号:
    5355-2007
  • 财政年份:
    2011
  • 资助金额:
    $ 249.41万
  • 项目类别:
    Discovery Grants Program - Individual
Open problems in geometry of numbers, and the geometry of quantum phases
数几何和量子相几何中的未决问题
  • 批准号:
    5355-2007
  • 财政年份:
    2010
  • 资助金额:
    $ 249.41万
  • 项目类别:
    Discovery Grants Program - Individual
Open problems in geometry of numbers, and the geometry of quantum phases
数几何和量子相几何中的未决问题
  • 批准号:
    5355-2007
  • 财政年份:
    2009
  • 资助金额:
    $ 249.41万
  • 项目类别:
    Discovery Grants Program - Individual
Intersection numbers in enumerative algebraic geometry
枚举代​​数几何中的交点数
  • 批准号:
    383006-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 249.41万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了