High Order Number Schemes for Multi-Dimensional Systems of Conservation Laws and Conservative Schemes for MultiphaseFluids

多维守恒定律系统的高阶数方案和多相流体的保守方案

基本信息

  • 批准号:
    9805546
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-07-01 至 2001-06-30
  • 项目状态:
    已结题

项目摘要

DMS-9805546 Xu-Dong Liu This project is concerned with several new numerical methods for solving multidimensional systems of conservation laws, including a new fully conservative scheme for multi-phase fluid calculations. The first contribution of this project is the extension of Friedrich's positivity principle from multi-dimensional symmetric linear systems to systems of conservation laws, which has become one of the guidelines for designing numerical methods. A family of positive schemes is constructed. Positive schemes are very robust, simple and of low cost. Many numerical experiments have shown that positive schemes are among the best 2nd order accurate high resolution methods. This is also the first work of this type which contains theoretical results for scheme design in multi-dimensional hyperbolic systems. The second contribution of this project is the new Convex Essential-Non-Oscillatory (CENO) schemes for multi-dimensional hyperbolic systems. The scheme can be implemented in component-wise fashion. Therefore its apparent advantages are: (1) No complete set of eigenvectors is needed and hence weakly hyperbolic systems can be solved. (2) Component-wise limiting is twice as fast as field-by-field limiting in each space dimension, which makes Convex ENO one of the fastest existing schemes. (3) The component-wise version of the scheme is simple to program. In addition, (4) the Convex ENO scheme is very robust. The third contribution of this project is the introduction of a fully conservative method for multi-phase flow problems. This new idea enables us to avoid the spurious oscillations near material interfaces common to all other conservative schemes. This is done through the addition of a general equation of state. The new scheme works essentially for mixture of any fluids such as gamma-law gas, water and JWL (explosive material). The new idea works in any space dimension and is scheme-independent, which means it should apply to a typical users' existi ng code. Preliminary numerical experiments show that this scheme is very promising. This project is aimed at solving real world problems and is intended to have a significant impact on semiconductor device modeling, underwater and solid explosives modeling, computational fluid dynamics, magneto-hydrodynamics, and many other applications, which are all a part of high-performance computing. The principal goals are: (1) to design and improve numerical methods for more efficiency, simplicity, and robustness; (2) to improve computer simulation of multi-phase fluids. The methods reported in this project are a step towards this goal.
本项目研究了求解守恒律多维系统的几种新的数值方法,包括多相流体计算的一种新的全保守格式。本项目的第一个贡献是将弗里德里希的正性原理从多维对称线性系统扩展到守恒律系统,这已成为设计数值方法的指导原则之一。构造了一类正方案。正方案是非常强大的,简单和低成本。许多数值实验表明,正格式是最好的二阶精确高分辨率方法之一。这也是第一个包含多维双曲系统方案设计理论结果的此类工作。本课题的第二个贡献是新的多维双曲系统的凸本质非振荡(CENO)格式。该方案可以以组件方式实现。因此,它的明显优点是:(1)不需要特征向量的完备集,因此可以求解弱双曲系统。(2)在每个空间维度上,逐字段限制的速度是逐字段限制的两倍,这使得凸ENO成为现有最快的方案之一。(3)该方案的组件版本易于编程。此外,(4)凸ENO方案具有很强的鲁棒性。本项目的第三个贡献是引入了多相流问题的全保守方法。这种新思想使我们能够避免所有其他保守方案在材料界面附近常见的伪振荡。这是通过加入一般的状态方程来实现的。新方案基本上适用于任何流体的混合物,如伽马定律气体、水和JWL(爆炸性物质)。这个新想法适用于任何空间维度,并且与方案无关,这意味着它应该适用于典型用户的现有代码。初步的数值实验表明,该方案是很有前途的。该项目旨在解决现实世界的问题,旨在对半导体器件建模、水下和固体炸药建模、计算流体动力学、磁流体动力学和许多其他应用产生重大影响,这些都是高性能计算的一部分。主要目标是:(1)设计和改进数值方法,以提高效率、简单性和鲁棒性;(2)改进多相流体的计算机模拟。在这个项目中报告的方法是朝着这个目标迈出的一步。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xu-Dong Liu其他文献

Immobilization and bioavailability of heavy metals in greenhouse soils amended with rice straw-derived biochar
稻草生物炭改良温室土壤中重金属的固定化和生物有效性
  • DOI:
    10.1016/j.ecoleng.2016.10.057
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Run-Hua Zhang;Zhi-Guo Li;Xu-Dong Liu;Bin-cai Wang;Guo-Lin Zhou;Xing-Xue Huang;Chu-Fa Lin;Ai-hua Wang;Margot Brooks
  • 通讯作者:
    Margot Brooks
Deciphering the anti-senescent effects of Clioquinol: Lifespan prolongation, metabolic homeostasis, and phenotypic rehabilitation in emDrosophila melanogaster/em
解读氯碘喹啉的抗衰老作用:黑腹果蝇的寿命延长、代谢稳态和表型恢复
  • DOI:
    10.1016/j.freeradbiomed.2025.06.046
  • 发表时间:
    2025-10-01
  • 期刊:
  • 影响因子:
    8.200
  • 作者:
    Xiao-Meng Liu;Xu-Dong Liu;Yu-Qi Zhang;Yu-Tong Liu;Lu-Wei Lv;Meng-Hao Wang;Qin Ren;Yang Liu;Meng-Zhen Wu;Ying-Xin Shi;Yun-Xia Zhang;Bing Li
  • 通讯作者:
    Bing Li
Evolution of stomatal closure to optimise water use efficiency in response to dehydration in ferns and seed plants
  • DOI:
    doi.org/10.1111/nph.17278
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
  • 作者:
    Yu-Jie Yang;Min-Hui Bi;Zheng-Fei Nie;Hui-Jiang;Xu-Dong Liu;Xiang-Wen Fang;Timothy J. Brodribb
  • 通讯作者:
    Timothy J. Brodribb
Plants breathing under pressure: mechanistic insights into soil compaction-induced physiological, molecular and biochemical responses in plants
  • DOI:
    10.1007/s00425-025-04624-1
  • 发表时间:
    2025-02-02
  • 期刊:
  • 影响因子:
    3.800
  • 作者:
    Md. Mahadi Hasan;Xu-Dong Liu;Md Atikur Rahman;Yehia Hazzazi;·Muhammad Wassem;Shantwana Ghimire;Nadiyah M. Alabdallah;Basmah M. Alharbi;Ahmad Humayan Kabir;Guangqian Yao;Xiang-Wen Fang
  • 通讯作者:
    Xiang-Wen Fang
Interaction analysis of FADS2 gene variants with chronic hepatitis B infection in Chinese patients
  • DOI:
    doi: 10.1016/j.meegid.2022.105289
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
  • 作者:
    Yao-Hui Sun;Jie Gao;Ji-Hua Shi;Sheng-Li Gao;Zhi-Ping Yan;Xu-Dong Liu;Hua-Peng Zhang;Jie Li;Wen-Zhi Guo;Shui-Jun Zhang
  • 通讯作者:
    Shui-Jun Zhang

Xu-Dong Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xu-Dong Liu', 18)}}的其他基金

Collaborative Research: High Order Numerical Schemes for Multi-Dimensional Systems of Conservation Laws and for Simulations of Multi-Phase Fluids
合作研究:守恒定律多维系统和多相流体模拟的高阶数值方案
  • 批准号:
    0107419
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

关于群上的短零和序列及其cross number的研究
  • 批准号:
    11501561
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

REU Site: Computational Number Theory
REU 网站:计算数论
  • 批准号:
    2349174
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Conference: Pittsburgh Links among Analysis and Number Theory (PLANT)
会议:匹兹堡分析与数论之间的联系 (PLANT)
  • 批准号:
    2334874
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Dynamical Approaches to Number Theory and Additive Combinatorics
数论和加法组合学的动态方法
  • 批准号:
    EP/Y014030/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Analytic Number Theory at the Interface
界面上的解析数论
  • 批准号:
    2401106
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Conference: Solvable Lattice Models, Number Theory and Combinatorics
会议:可解格子模型、数论和组合学
  • 批准号:
    2401464
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Class numbers and discriminants: algebraic and analytic number theory meet
类数和判别式:代数和解析数论的结合
  • 批准号:
    DP240100186
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Effect of Reynolds number on drag reduction: from near-wall cycle to large-scale motions.
雷诺数对减阻的影响:从近壁循环到大规模运动。
  • 批准号:
    2345157
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference: Southern Regional Number Theory Conference
会议:南方区域数论会议
  • 批准号:
    2341365
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
A1-Homotopy Theory and Applications to Enumerative Geometry and Number Theory
A1-同伦理论及其在枚举几何和数论中的应用
  • 批准号:
    2405191
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference: Comparative Prime Number Theory Symposium
会议:比较素数论研讨会
  • 批准号:
    2411537
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了