Computational and Mathematical Investigations in Optimization

优化中的计算和数学研究

基本信息

  • 批准号:
    9805602
  • 负责人:
  • 金额:
    $ 36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-07-15 至 2002-06-30
  • 项目状态:
    已结题

项目摘要

9805602ToddThe goal of this project is to continue a broad set of ongoing studies concerning optimization algorithms and the mathematical theory underlying them. The project covers continuous and discrete optimization algorithms, both exact and approximate, their computational complexity, practical large-scale implementation, performance guarantees (in the case of approximate algorithms), and applications in such areas as crew-scheduling, image-processing, facility location, financial modeling, electrical power systems, and statistical learning theory.The research to be conducted can be roughly grouped into three areas. The first is interior-point methods, including the study of: semidefinite programming, algorithm design and analysis; infeasible-interior-point methods for both linear and convex programming, including detection of infeasibility; the complexity of target-following methods and of semidefinite programming; and methods for large-scale nonlinear problems arising in image-processing, financial modeling, and statistical learning theory. The second area of research is combinatorial optimization, encompassing: investigation of stable-set and crew-scheduling problems; the study of linear congruence relations and their use in branch-and-cut methods; analysis of inconsistent linear inequality systems, with applications in computer vision, data compression, and statistical discriminant analysis; and design of approximation algorithms for facility location problems. The third is concerned with numerical linear algebra, and will study: methods to solve the linear systems that arise at each iteration of an interior-point semidefinite programming algorithm in a stable manner; and special methods for obtaining accurate solutions to ill-conditioned linear systems arising in electrical power systems.This research will lead to improved algorithms to find exact or approximate solutions to large-scale optimization problems arising in industry, finance, the military, science, and engineering. Emphasis is placed on the interplay between practice and theory.
9805602 Todd这个项目的目标是继续一系列正在进行的关于优化算法和数学理论的研究。 本项目的研究内容包括连续和离散优化算法(精确和近似)、计算复杂性、实际大规模实现、性能保证(近似算法)以及在机组调度、图像处理、设施定位、金融建模、电力系统和统计学习理论等领域的应用。 首先是边界点方法,包括研究:半定规划,算法设计和分析;线性和凸规划的不可行内点方法,包括不可行性的检测;目标跟踪方法和半定规划的复杂性;以及图像处理,金融建模和统计学习理论中出现的大规模非线性问题的方法。 第二个研究领域是组合优化,包括:稳定集和机组调度问题的调查;线性同余关系的研究及其在分支和切割方法中的应用;不一致线性不等式系统的分析,在计算机视觉,数据压缩和统计判别分析中的应用;以及设施定位问题的近似算法的设计。 第三是关于数值线性代数,并将研究:方法来解决线性系统出现在每一次迭代的一个临界点半定规划算法在一个稳定的方式;以及求解电力系统中病态线性系统的精确解的特殊方法。在工业、金融、军事、科学和工程中出现的规模优化问题。 重点放在实践和理论之间的相互作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Todd其他文献

Brain boosters: Evaluating a pilot program for memory complaints in veterans.
大脑助推器:评估针对退伍军人记忆问题的试点计划。
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    N. A. Roberts;M. Burleson;Lori B Burmeister;M. Bushnell;Dana Epstein;Michael Todd;C. Walter;K. Powell;Nicole Hoffmann;C. Reynolds;Kathleen Goren
  • 通讯作者:
    Kathleen Goren
THERAPEUTIC EQUIVALENCY - AN EFFECTIVE ANTIMICROBIAL UTILIZATION TOOL FOR PEDIATRIC HOSPITALS. • 671
  • DOI:
    10.1203/00006450-199604001-00693
  • 发表时间:
    1996-04-01
  • 期刊:
  • 影响因子:
    3.100
  • 作者:
    James K Todd;Robert Rogers;Jeff Rosky;Michael Todd;Jarrod Milton
  • 通讯作者:
    Jarrod Milton
Restoring Trust and Requiring Consent in Death by Neurological Criteria
根据神经学标准恢复信任并要求死亡同意
  • DOI:
    10.1080/15265161.2020.1754508
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. M. Johnson;Aden Hailu;Elijah Smith;Michael Todd;Areen Chakrabarti;Jayden Auyeung;Cho Fook Cheng
  • 通讯作者:
    Cho Fook Cheng
The complexities of modeling mood-drinking relationships: Lessons learned from daily process research.
情绪-饮酒关系建模的复杂性:从日常过程研究中吸取的教训。
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Mohr;S. Armeli;H. Tennen;Michael Todd
  • 通讯作者:
    Michael Todd
A cluster randomized factorial trial of school-lunch salad bars and marketing on elementary students’ objectively measured fruit and vegetable consumption

Michael Todd的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Todd', 18)}}的其他基金

I-Corps: A Low-Cost Structured Light Monitoring System for Additive Manufacturing Processes
I-Corps:用于增材制造工艺的低成本结构光监控系统
  • 批准号:
    2112885
  • 财政年份:
    2021
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Interior-Point Methods for Conic Optimization
圆锥优化的内点方法
  • 批准号:
    0513337
  • 财政年份:
    2005
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Interior-Point Methods for Conic Optimization
圆锥优化的内点方法
  • 批准号:
    0209457
  • 财政年份:
    2002
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Investigatons in Linear Programming and Methods for Non- Linear Equations
线性规划和非线性方程方法的研究
  • 批准号:
    8602534
  • 财政年份:
    1986
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing grant
Algorithms for Large-Scale Linear Programming and Nonlinear Equations
大规模线性规划和非线性方程的算法
  • 批准号:
    8215361
  • 财政年份:
    1983
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing grant
Investigations in Discrete Optimization
离散优化研究
  • 批准号:
    8113534
  • 财政年份:
    1981
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing grant
Special Structure in Simplicial Algorithms
单纯形算法中的特殊结构
  • 批准号:
    7921279
  • 财政年份:
    1980
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing grant
Aspects of Fixed-Point Algorithms
定点算法的各个方面
  • 批准号:
    7608749
  • 财政年份:
    1977
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Neural investigations of magnitude processing as a pathway to understanding mathematical thinking
职业:幅度处理的神经研究作为理解数学思维的途径
  • 批准号:
    1654089
  • 财政年份:
    2017
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Conditions of retention and attrition of linguistic heritage: mathematical model analyses and field investigations
语言遗产的保留和消耗条件:数学模型分析和实地调查
  • 批准号:
    16K13251
  • 财政年份:
    2016
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Mathematical investigations of dynamical systems on complex networks
复杂网络动力系统的数学研究
  • 批准号:
    238901-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 36万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical investigations of dynamical systems on complex networks
复杂网络动力系统的数学研究
  • 批准号:
    238901-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 36万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical investigations of dynamical systems on complex networks
复杂网络动力系统的数学研究
  • 批准号:
    238901-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 36万
  • 项目类别:
    Discovery Grants Program - Individual
Investigations of the stock structure of Pacific bluefin tuna using biologging, mathematical modeling and otolith chemical analysis
利用生物记录、数学模型和耳石化学分析研究太平洋蓝鳍金枪鱼的种群结构
  • 批准号:
    24380104
  • 财政年份:
    2012
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Mathematical investigations of dynamical systems on complex networks
复杂网络动力系统的数学研究
  • 批准号:
    238901-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 36万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical investigations in quantum error correction
量子纠错的数学研究
  • 批准号:
    363762-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 36万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Mathematical investigations of dynamical systems on complex networks
复杂网络动力系统的数学研究
  • 批准号:
    238901-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 36万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical and emprirical investigations into shoulder function
肩部功能的数学和实证研究
  • 批准号:
    311895-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 36万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了