Mathematical investigations of dynamical systems on complex networks

复杂网络动力系统的数学研究

基本信息

  • 批准号:
    238901-2010
  • 负责人:
  • 金额:
    $ 2.55万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2010
  • 资助国家:
    加拿大
  • 起止时间:
    2010-01-01 至 2011-12-31
  • 项目状态:
    已结题

项目摘要

The objective of the proposed research is to develop new mathematical theories and analytic tools for the investigation of large-scale dynamical systems arising from many fields of science and engineering. The PI proposes a mathematical framework of interconnected systems of nonlinear differential equations defined over a network represented by a directed graph. Each vertex of the graph or a node of the network can be a spatial patch in an ecological system, a homogenous host population for infectious diseases, a species of DNA or protein or a type of cells in biological regulatory systems, a single neuron in neural networks, a chemical complex in chemical reactions, a mechanical, electrical or biochemical oscillator in a network of coupled oscillators, an unmanned aerial machine or a nano-satellite in flight formation networks. The dynamics at each vertex can be described by a low-dimensional system of differential equations called vertex system. The complexity of the interconnected systems lies in its large scale and in the interactions among vertex systems.
拟议研究的目标是开发新的数学理论和分析工具,用于调查科学和工程许多领域中产生的大规模动力系统。PI提出了一个数学框架的互联系统的非线性微分方程定义在一个网络表示的有向图。图的每个顶点或网络的节点可以是生态系统中的空间斑块、传染病的同质宿主群体、生物调节系统中的DNA或蛋白质的种类或细胞的类型、神经网络中的单个神经元、化学反应中的化学复合物、耦合振荡器网络中的机械、电或生物化学振荡器,无人机或飞行编队网络中的纳米卫星。每个顶点的动力学可以用称为顶点系统的低维微分方程系统来描述。互联系统的复杂性在于它的规模大和顶点系统之间的相互作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Li, Michael其他文献

Effect of corticosteroid dosing on outcomes in high-grade immune checkpoint inhibitor hepatitis
  • DOI:
    10.1002/hep.32215
  • 发表时间:
    2021-12-07
  • 期刊:
  • 影响因子:
    13.5
  • 作者:
    Li, Michael;Wong, Danny;Grover, Shilpa
  • 通讯作者:
    Grover, Shilpa
Selecting Children with Vesicoureteral Reflux Who are Most Likely to Benefit from Antibiotic Prophylaxis: Application of Machine Learning to RIVUR
  • DOI:
    10.1097/ju.0000000000001445
  • 发表时间:
    2021-04-01
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Bertsimas, Dimitris;Li, Michael;Wang, Hsin-Hsiao Scott
  • 通讯作者:
    Wang, Hsin-Hsiao Scott
Quantitative Spectral Data Analysis Using Extreme Learning Machines Algorithm Incorporated with PCA
  • DOI:
    10.3390/a14010018
  • 发表时间:
    2021-01-01
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Li, Michael;Wibowo, Santoso;Li, Lily D.
  • 通讯作者:
    Li, Lily D.
Two approaches to forecast Ebola synthetic epidemics
  • DOI:
    10.1016/j.epidem.2017.02.011
  • 发表时间:
    2018-03-01
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Champredon, David;Li, Michael;Dushoff, Jonathan
  • 通讯作者:
    Dushoff, Jonathan
Evidence that promotion of male circumcision did not lead to sexual risk compensation in prioritized Sub-Saharan countries
  • DOI:
    10.1371/journal.pone.0175928
  • 发表时间:
    2017-04-25
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Shi, Chyun-Fung;Li, Michael;Dushoff, Jonathan
  • 通讯作者:
    Dushoff, Jonathan

Li, Michael的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Li, Michael', 18)}}的其他基金

Analysis and Applications of Complex Dynamical Systems
复杂动力系统分析与应用
  • 批准号:
    RGPIN-2020-04134
  • 财政年份:
    2022
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis and Applications of Complex Dynamical Systems
复杂动力系统分析与应用
  • 批准号:
    RGPIN-2020-04134
  • 财政年份:
    2021
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis and Applications of Complex Dynamical Systems
复杂动力系统分析与应用
  • 批准号:
    RGPIN-2020-04134
  • 财政年份:
    2020
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Modeling of the Current COVID-19 Epidemic and Potential Second Wave in Alberta to Improve Public Health Responses
对艾伯塔省当前的 COVID-19 疫情和潜在的第二波疫情进行数学建模,以改善公共卫生应对措施
  • 批准号:
    555037-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Alliance Grants
Mathematical Analysis and Statistical Inference of Complex Dynamical Systems
复杂动力系统的数学分析和统计推断
  • 批准号:
    RGPIN-2015-05395
  • 财政年份:
    2019
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Analysis and Statistical Inference of Complex Dynamical Systems
复杂动力系统的数学分析和统计推断
  • 批准号:
    RGPIN-2015-05395
  • 财政年份:
    2018
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Advancement of automated data collection using web bots
使用网络机器人改进自动数据收集
  • 批准号:
    522447-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Experience Awards (previously Industrial Undergraduate Student Research Awards)
Mathematical Analysis and Statistical Inference of Complex Dynamical Systems
复杂动力系统的数学分析和统计推断
  • 批准号:
    RGPIN-2015-05395
  • 财政年份:
    2017
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Analysis and Statistical Inference of Complex Dynamical Systems
复杂动力系统的数学分析和统计推断
  • 批准号:
    RGPIN-2015-05395
  • 财政年份:
    2016
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Analysis and Statistical Inference of Complex Dynamical Systems
复杂动力系统的数学分析和统计推断
  • 批准号:
    RGPIN-2015-05395
  • 财政年份:
    2015
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Mathematical investigations of dynamical systems on complex networks
复杂网络动力系统的数学研究
  • 批准号:
    238901-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical investigations of dynamical systems on complex networks
复杂网络动力系统的数学研究
  • 批准号:
    238901-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical investigations of dynamical systems on complex networks
复杂网络动力系统的数学研究
  • 批准号:
    238901-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical investigations of dynamical systems on complex networks
复杂网络动力系统的数学研究
  • 批准号:
    238901-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Non-adiabatic effects in quantum dynamical investigations of nuclei in the collision system H2 + H+, H + H2+ and H3+
碰撞系统 H2 H 、 H H2 和 H3 中原子核量子动力学研究中的非绝热效应
  • 批准号:
    65676567
  • 财政年份:
    2008
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Research Grants
Numerical investigations of periodic solutions and stable and unstable manifolds in dynamical systems
动力系统中周期解以及稳定和不稳定流形的数值研究
  • 批准号:
    318569-2005
  • 财政年份:
    2006
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Numerical investigations of periodic solutions and stable and unstable manifolds in dynamical systems
动力系统中周期解以及稳定和不稳定流形的数值研究
  • 批准号:
    318569-2005
  • 财政年份:
    2005
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Investigations of Lattice Dynamical Properties in Filled Skutterudite Compounds
填充方钴矿化合物中晶格动力学性质的研究
  • 批准号:
    15072205
  • 财政年份:
    2003
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
Basic investigations of the deformation and failure behaviour of textile-reinforced composites and hybrid structures under high-dynamical loading
高动态载荷下纺织增强复合材料和混合结构变形和失效行为的基础研究
  • 批准号:
    5332630
  • 财政年份:
    2001
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Priority Programmes
Numerical MHD Investigations of the Dynamical Correspondence of CMEs, Flares, Prominences, and Associated MHD Waves
日冕物质抛射、耀斑、日珥和相关 MHD 波的动力学对应的数值 MHD 研究
  • 批准号:
    0070385
  • 财政年份:
    2000
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了