Interior-Point Methods for Conic Optimization

圆锥优化的内点方法

基本信息

  • 批准号:
    0513337
  • 负责人:
  • 金额:
    $ 31.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-08-01 至 2009-07-31
  • 项目状态:
    已结题

项目摘要

his project aims to study interior-point methods for conicprogramming problems. Improvements will be considered to allow these methods to easily detect when such problems are infeasible or unbounded, as often happens whennew models are developed. The most efficient interior-point methods in most cases are primal-dual methods, but in certain cases, dual methods are expected to be faster as long as a suitable barrier functioncan be found: the project will study ways to construct suchefficient barrier functions. These two themes can be studied in aunified way by considering a general conic problem and a related problem associated with unboundedness. Several topics will be investigated from this viewpoint:the relationship between optimal solutions, central paths,and Newton steps for the two formulations,and the development of so-called self-concordant barrierfunctions for faces and recession cones of convex sets forwhich such barriers are known.This project will continue investigations into interior-pointmethods for conic optimization problems. These methods have proved themost efficient for solving truly large-scale linear programming problems,as arise in resource allocation problems in industry, government, and themilitary. More recently, they have been extended to a range ofnonlinear problems, in particular to second-order cone andsemidefinite programming, which have applications in structuraloptimization, antenna array design, filter design, and portfolio optimization, and in obtaining tightbounds for hard combinatorial optimization problems.The project will extend the capabilities of these methods todetect when such problems have been poorly formulatedso that optimal solutions do not exist. Improved methods for very large-scale problems will be investigated.Advances will be tested in the software package SDPT3 developed ina previous NSF project with two former graduate students, andavailable to other users over the internet. Improvementsin the code will be made available to practitioners and other codedevelopers. Graduate students will be trained to become experts in the modelling and computational power of conic programming.
他的项目旨在研究圆锥规划问题的边界点方法。将考虑改进,使这些方法能够很容易地检测到这些问题是不可行的或无界的,因为经常发生在开发新模型时。 在大多数情况下,最有效的邻域点方法是原始-对偶方法,但在某些情况下,只要能找到合适的障碍函数,对偶方法预计会更快:该项目将研究如何构造这种有效的障碍函数。这两个主题可以通过考虑一个一般的圆锥曲线问题和一个与无界性相关的问题来统一研究。从这个观点出发,将研究几个课题:两个公式的最优解、中心路径和牛顿步骤之间的关系,以及已知这种障碍的凸集的面和凹锥的所谓自协调障碍函数的发展。本项目将继续研究圆锥优化问题的边界点方法。这些方法被证明是解决真正的大规模线性规划问题,如在工业,政府和商业中的资源分配问题中出现的最有效的方法。最近,他们已经扩展到一系列的非线性问题,特别是二阶锥和半定规划,这在结构优化,天线阵列设计,滤波器设计和投资组合优化的应用,该项目将扩展这些方法的能力,以检测何时此类问题的公式化程度很差,从而使最优解不存在. 改进的方法非常大规模的问题将进行调查。进步将在软件包SDPT 3测试在以前的NSF项目与两名前研究生,并提供给其他用户在互联网上。代码中的成果将提供给从业者和其他代码开发人员。研究生将接受培训,成为圆锥规划建模和计算能力的专家。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Todd其他文献

Brain boosters: Evaluating a pilot program for memory complaints in veterans.
大脑助推器:评估针对退伍军人记忆问题的试点计划。
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    N. A. Roberts;M. Burleson;Lori B Burmeister;M. Bushnell;Dana Epstein;Michael Todd;C. Walter;K. Powell;Nicole Hoffmann;C. Reynolds;Kathleen Goren
  • 通讯作者:
    Kathleen Goren
THERAPEUTIC EQUIVALENCY - AN EFFECTIVE ANTIMICROBIAL UTILIZATION TOOL FOR PEDIATRIC HOSPITALS. • 671
  • DOI:
    10.1203/00006450-199604001-00693
  • 发表时间:
    1996-04-01
  • 期刊:
  • 影响因子:
    3.100
  • 作者:
    James K Todd;Robert Rogers;Jeff Rosky;Michael Todd;Jarrod Milton
  • 通讯作者:
    Jarrod Milton
Restoring Trust and Requiring Consent in Death by Neurological Criteria
根据神经学标准恢复信任并要求死亡同意
  • DOI:
    10.1080/15265161.2020.1754508
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. M. Johnson;Aden Hailu;Elijah Smith;Michael Todd;Areen Chakrabarti;Jayden Auyeung;Cho Fook Cheng
  • 通讯作者:
    Cho Fook Cheng
The complexities of modeling mood-drinking relationships: Lessons learned from daily process research.
情绪-饮酒关系建模的复杂性:从日常过程研究中吸取的教训。
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Mohr;S. Armeli;H. Tennen;Michael Todd
  • 通讯作者:
    Michael Todd
A cluster randomized factorial trial of school-lunch salad bars and marketing on elementary students’ objectively measured fruit and vegetable consumption

Michael Todd的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Todd', 18)}}的其他基金

I-Corps: A Low-Cost Structured Light Monitoring System for Additive Manufacturing Processes
I-Corps:用于增材制造工艺的低成本结构光监控系统
  • 批准号:
    2112885
  • 财政年份:
    2021
  • 资助金额:
    $ 31.88万
  • 项目类别:
    Standard Grant
Interior-Point Methods for Conic Optimization
圆锥优化的内点方法
  • 批准号:
    0209457
  • 财政年份:
    2002
  • 资助金额:
    $ 31.88万
  • 项目类别:
    Standard Grant
Computational and Mathematical Investigations in Optimization
优化中的计算和数学研究
  • 批准号:
    9805602
  • 财政年份:
    1998
  • 资助金额:
    $ 31.88万
  • 项目类别:
    Continuing Grant
Investigatons in Linear Programming and Methods for Non- Linear Equations
线性规划和非线性方程方法的研究
  • 批准号:
    8602534
  • 财政年份:
    1986
  • 资助金额:
    $ 31.88万
  • 项目类别:
    Continuing grant
Algorithms for Large-Scale Linear Programming and Nonlinear Equations
大规模线性规划和非线性方程的算法
  • 批准号:
    8215361
  • 财政年份:
    1983
  • 资助金额:
    $ 31.88万
  • 项目类别:
    Continuing grant
Investigations in Discrete Optimization
离散优化研究
  • 批准号:
    8113534
  • 财政年份:
    1981
  • 资助金额:
    $ 31.88万
  • 项目类别:
    Continuing grant
Special Structure in Simplicial Algorithms
单纯形算法中的特殊结构
  • 批准号:
    7921279
  • 财政年份:
    1980
  • 资助金额:
    $ 31.88万
  • 项目类别:
    Continuing grant
Aspects of Fixed-Point Algorithms
定点算法的各个方面
  • 批准号:
    7608749
  • 财政年份:
    1977
  • 资助金额:
    $ 31.88万
  • 项目类别:
    Standard Grant

相似国自然基金

解大型非对称鞍点(Saddle Point) 问题的有效算法的研究
  • 批准号:
    60573157
  • 批准年份:
    2005
  • 资助金额:
    20.0 万元
  • 项目类别:
    面上项目

相似海外基金

Interior point branch-and-cut methods for large scale integer programming
大规模整数规划的内点分支割法
  • 批准号:
    387379-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 31.88万
  • 项目类别:
    Canadian Graduate Scholarships Foreign Study Supplements
Warmstarting Techniques for Stochastic Programming Problems solved by Interior Point Methods
内点法求解随机规划问题的热启动技术
  • 批准号:
    EP/E036910/1
  • 财政年份:
    2007
  • 资助金额:
    $ 31.88万
  • 项目类别:
    Research Grant
Efficient Interior-Point Methods for Mixed-Integer Nonlinear and Conic Programming
混合整数非线性和圆锥规划的高效内点方法
  • 批准号:
    0725692
  • 财政年份:
    2007
  • 资助金额:
    $ 31.88万
  • 项目类别:
    Standard Grant
Interior Point Methods for Complementarity Problems
互补问题的内点法
  • 批准号:
    0728878
  • 财政年份:
    2007
  • 资助金额:
    $ 31.88万
  • 项目类别:
    Standard Grant
Interior-point branch-and-price methods for integer programming
整数规划的内点分支价格方法
  • 批准号:
    249491-2002
  • 财政年份:
    2006
  • 资助金额:
    $ 31.88万
  • 项目类别:
    Discovery Grants Program - Individual
Interior-point branch-and-price methods for integer programming
整数规划的内点分支价格方法
  • 批准号:
    249491-2002
  • 财政年份:
    2005
  • 资助金额:
    $ 31.88万
  • 项目类别:
    Discovery Grants Program - Individual
Interior-point methods of optimization: extensions and applications
内点优化方法:扩展和应用
  • 批准号:
    0402740
  • 财政年份:
    2004
  • 资助金额:
    $ 31.88万
  • 项目类别:
    Standard Grant
Interior-point branch-and-price methods for integer programming
整数规划的内点分支价格方法
  • 批准号:
    249491-2002
  • 财政年份:
    2004
  • 资助金额:
    $ 31.88万
  • 项目类别:
    Discovery Grants Program - Individual
Interior-point branch-and-price methods for integer programming
整数规划的内点分支价格方法
  • 批准号:
    249491-2002
  • 财政年份:
    2003
  • 资助金额:
    $ 31.88万
  • 项目类别:
    Discovery Grants Program - Individual
Interior-point branch-and-price methods for integer programming
整数规划的内点分支价格方法
  • 批准号:
    249491-2002
  • 财政年份:
    2002
  • 资助金额:
    $ 31.88万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了