POWRE: Distance Graphs and Channel Assignment Problems

POWRE:距离图和通道分配问题

基本信息

项目摘要

This project initiates further research on the fields of distancegraphs and the channel assignment (also named T-coloring). Bothfields have been active research areas for years.There are two major components in this project. The first oneextends research on problems on distance graphs and T-coloringand their connections. The first connection between distancegraphs and T-coloring was proved by the PI [1997] and was used toobtain extend solutions on a problem on distance graphs raisedand studied by Eggleton, Erdos and Skilton [1985]. A joint workwith Chang and Zhu [1997] completely solved the problem andproved the second connection which showed that the fractionalchromatic number of a distance graph is equal to its asymptoticT-coloring ratio. The latter parameter was shown, by Griggs andthe PI [1996], to be closely related to an earlier number theoryproblem, namely, density of sequences with missing differences,studied by Cantor and Gordon [1975] and by Haralambis [1977]. Theproject will follow this direction of research to explore otheruseful connections between distance graphs and T-coloring, toobtain further results on distance graphs including theirchromatic number, circular chromatic number and fractionalchromatic number, and to study a generalization of the problem ofEggleton, Erdos and Skilton.Motivated from practical situations in the channel assignmentproblem, several variations of T-coloring have been studied. Thesecond part of this project will extend the research of the PI'spast and current work and joint work on two variations ofT-coloring, namely, no-hole T-coloring and distance two labelingsof graphs. Research on the distance two labelings will alsobenefit the practical two-level-interference channel assignmentproblem.For update references and works of this project, readers arewelcome to visit the PI's web site at:www.calstatela.edu/faculty/dliu/dliu.htm or email to:dliu@calstatela.edu.This POWRE project is supported by the MPS Office of Multidisciplinary Activities (OMA).
本计画将在距离图与通道分配(也称为T-着色)领域作进一步的研究。 这两个领域多年来一直是活跃的研究领域。 第一部分是对距离图和T-染色及其联系问题的研究。 距离图与T-染色的第一个联系是由PI [1997]证明的,并被用于Eggleton,Erdos和Skilton [1985]提出和研究的距离图问题的推广解。 Chang和Zhu [1997]的一个联合工作完全解决了这个问题,并证明了第二种联系,即距离图的分数色数等于它的渐近T-染色比。 后一个参数被Griggs和PI [1996]证明与一个早期的数论问题密切相关,即Cantor和Gordon [1975]和Haralambis [1977]研究的缺失差序列的密度。本项目将沿着这一研究方向探索距离图与T-着色之间的其他有用联系,进一步得到距离图的色数、圆色数和分数色数等结果,并研究Eggleton,Erdos和Skilton问题的推广。 本项目的第二部分是对PI的过去和现在的工作以及与PI的联合工作的扩展,主要研究了T-染色的两个变种,即图的无洞T-染色和距离二标号。 对距离两标记的研究也将有助于实际的两电平干扰信道分配问题。如需本项目的最新参考资料和工作,欢迎访问PI的网站:www.calstatela.edu/faculty/dliu/dliu.htm或电子邮件:dliu@calstatela.edu。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daphne Liu其他文献

Comparative Safety of Ultrasound Enhancing Agents: A Systematic Review and Bayesian Network Meta-Analysis
  • DOI:
    10.1016/j.amjcard.2024.11.009
  • 发表时间:
    2025-02-15
  • 期刊:
  • 影响因子:
  • 作者:
    Ricardo De La Fuente Gonzalez;Arturo Cabra;Daphne Liu;Myra Gueco;Emi Naslazi;Shuai Fu;Zuzanna Maliszewska;Noemi Hummel;Dustin M. Dunham
  • 通讯作者:
    Dustin M. Dunham

Daphne Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daphne Liu', 18)}}的其他基金

RUI: Graph Coloring and Choosability
RUI:图形着色和可选择性
  • 批准号:
    1600778
  • 财政年份:
    2016
  • 资助金额:
    $ 7.37万
  • 项目类别:
    Standard Grant
RUI: Graph Coloring Parameters: Their Interplay with Number Theory Problems and Applications to Broadcast Communications
RUI:图形着色参数:它们与数论问题的相互作用以及广播通信的应用
  • 批准号:
    0302456
  • 财政年份:
    2003
  • 资助金额:
    $ 7.37万
  • 项目类别:
    Continuing Grant

相似海外基金

An expanded catalogue of distance-regular graphs
距离正则图的扩展目录
  • 批准号:
    572188-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 7.37万
  • 项目类别:
    University Undergraduate Student Research Awards
Distance-regular graphs of prime-power order
质次幂阶的距离正则图
  • 批准号:
    561553-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 7.37万
  • 项目类别:
    University Undergraduate Student Research Awards
Cataloguing highly symmetric distance-regular graphs
编目高度对称的距离正则图
  • 批准号:
    561554-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 7.37万
  • 项目类别:
    University Undergraduate Student Research Awards
Distance-regular graphs with primitive automorphism groups
具有本原自同构群的距离正则图
  • 批准号:
    551329-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 7.37万
  • 项目类别:
    University Undergraduate Student Research Awards
Simply Connected Distance-Regular Graphs
简单连通距离正则图
  • 批准号:
    18K03222
  • 财政年份:
    2018
  • 资助金额:
    $ 7.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
AF: Small: Graphs and structures for distance estimation
AF:小:用于距离估计的图形和结构
  • 批准号:
    1740525
  • 财政年份:
    2017
  • 资助金额:
    $ 7.37万
  • 项目类别:
    Standard Grant
Convexity, distance invariants and longest paths in graphs
图中的凸性、距离不变量和最长路径
  • 批准号:
    198281-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 7.37万
  • 项目类别:
    Discovery Grants Program - Individual
AF: Small: Graphs and structures for distance estimation
AF:小:用于距离估计的图形和结构
  • 批准号:
    1528078
  • 财政年份:
    2015
  • 资助金额:
    $ 7.37万
  • 项目类别:
    Standard Grant
Convexity, distance invariants and longest paths in graphs
图中的凸性、距离不变量和最长路径
  • 批准号:
    198281-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 7.37万
  • 项目类别:
    Discovery Grants Program - Individual
Convexity, distance invariants and longest paths in graphs
图中的凸性、距离不变量和最长路径
  • 批准号:
    198281-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 7.37万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了