CONACyT: Solution of the Equations Describing the Multiphase Flow and Transport of Non-aqueous Phase Fluids in the Subsurface Using a Parallel-processing Collocation Method
CONACyT:使用并行处理配置方法求解描述地下非水相流体的多相流动和传输的方程
基本信息
- 批准号:9809516
- 负责人:
- 金额:$ 6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-08-01 至 2000-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract CTS-9809516 G. F. Pinder, U. of Vermont This is a collaborative project between research groups at the University of Vermont (Prof. G. F. Pinder) and the Autonomous University of Mexico (Prof. I. Herrera) in the area of multiphase flow simulation in porous media. Transport of non-aqueous phase fluids will be simulated using finite element method and collocation method with a new interpolation approach based upon splines under tension. The resulting set of algebraic equations will be solved using the conjugate gradient method based upon the optimal location of the collocation points. The method will allow for simulations of flows with sharp fronts and use of parallel processing algorithms. The collaborative project will include the professors and their students. This project was awarded as part of the NSF-CONACyT initiative. The collaboration will contribute to the development of long-term US-Mexico research collaboration in the area of computer simulation and environment (underground contaminant transport).
摘要CTS-9809516 G. F.平德,美国佛蒙特 这是佛蒙特大学研究小组之间的一个合作项目(G。F. Pinder)和墨西哥自治大学(I. Herrera)在多孔介质多相流模拟领域的研究。 非水相流体的输运将采用有限元法和配点法,并采用一种新的基于张力样条的插值方法进行模拟。 将使用基于配置点的最佳位置的共轭梯度法来求解由此产生的代数方程组。 该方法将允许模拟具有尖锐前沿的流动并使用并行处理算法。 合作项目将包括教授和他们的学生。 该项目是NSF-CONACyT倡议的一部分。 这项合作将有助于发展美国和墨西哥在计算机模拟和环境(地下污染物运输)领域的长期研究合作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
George Pinder其他文献
Transport of Solute from a Fine-Grained Unit to a Coarse-Grained Host Under Pulsed-Pumping Fluid Dynamics: An Experimental Investigation
- DOI:
10.1007/s11242-016-0673-3 - 发表时间:
2016-03-21 - 期刊:
- 影响因子:2.600
- 作者:
George Lester;George Pinder - 通讯作者:
George Pinder
George Pinder的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('George Pinder', 18)}}的其他基金
Symposium on Scientific and Engineering Tools to Address Grounwater Depletion
解决地下水枯竭的科学和工程工具研讨会
- 批准号:
1643241 - 财政年份:2016
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
EAGER: Contaminant Transport Behavior in and at the Interface of Fine-Grained Sediments; Visualization, Simulation and Analysis
EAGER:细粒沉积物内部和界面处的污染物迁移行为;
- 批准号:
1523488 - 财政年份:2015
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
EAGER: Quantitative Environmental Risk Assessment of Energy Extraction from Deep Shale Formations
EAGER:从深层页岩地层中提取能源的定量环境风险评估
- 批准号:
1352753 - 财政年份:2013
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
Collaborative Research: EAGER: A New Approach to the Analysis of the Risk of Hydrofracking Fluid Migration from Unconventional Shales to Groundwater Reservoirs
合作研究:EAGER:水力压裂液从非常规页岩运移至地下水库风险分析的新方法
- 批准号:
1247437 - 财政年份:2012
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
SGER: New Enabling Technology for the Study of Groundwater Flow and Transport Under Uncertainty
SGER:研究不确定性下地下水流和输运的新使能技术
- 批准号:
0130652 - 财政年份:2001
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Groundwater Remediation Design Using Fuzzy Sets and Fuzzy Logic
使用模糊集和模糊逻辑的地下水修复设计
- 批准号:
9700639 - 财政年份:1997
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
U.S. Participant Travel to 8th International Conference on Computational Methods in Water Resources, June 11-15,1990in Venice, Italy
美国与会者前往参加 1990 年 6 月 11 日至 15 日在意大利威尼斯举行的第八届水资源计算方法国际会议
- 批准号:
9007634 - 财政年份:1990
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
U.S.-Mexico Cooperative Research: Development and Application of Numerical Techniques For Groundwater Simulation
美墨合作研究:地下水模拟数值技术的开发与应用
- 批准号:
8815569 - 财政年份:1989
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
U.S.-Mexico Cooperative Research: Development and Applica- tion of Numerical Techniques for Groundwater Flow and Transport
美国-墨西哥合作研究:地下水流动和输送数值技术的开发和应用
- 批准号:
8515296 - 财政年份:1986
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Boundary Integral Equation Simulation of Groundwater Flow And Transport
地下水流动与输送的边界积分方程模拟
- 批准号:
8305294 - 财政年份:1983
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
相似国自然基金
相似海外基金
The Solution of Partial Differential Equations on Realistic Geometries
现实几何上偏微分方程的解
- 批准号:
RGPIN-2020-06022 - 财政年份:2022
- 资助金额:
$ 6万 - 项目类别:
Discovery Grants Program - Individual
Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
- 批准号:
RGPIN-2017-05811 - 财政年份:2022
- 资助金额:
$ 6万 - 项目类别:
Discovery Grants Program - Individual
Accurate and Efficient Computational Methods for the Numerical Solution of High-Dimensional Partial Differential Equations in Computational Finance
计算金融中高维偏微分方程数值解的准确高效计算方法
- 批准号:
569181-2022 - 财政年份:2022
- 资助金额:
$ 6万 - 项目类别:
Postgraduate Scholarships - Doctoral
Analysis of solution dynamics for time-fractional reaction-diffusion equations and systems
时间分数反应扩散方程和系统的解动力学分析
- 批准号:
22K13954 - 财政年份:2022
- 资助金额:
$ 6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Solution of Partial Differential Equations on Realistic Geometries
现实几何上偏微分方程的解
- 批准号:
RGPIN-2020-06022 - 财政年份:2021
- 资助金额:
$ 6万 - 项目类别:
Discovery Grants Program - Individual
An efficient, accurate and robust solution technique for variable coefficient elliptic partial differential equations in complex geometries
复杂几何中变系数椭圆偏微分方程的高效、准确和稳健的求解技术
- 批准号:
2110886 - 财政年份:2021
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
- 批准号:
RGPIN-2017-05811 - 财政年份:2021
- 资助金额:
$ 6万 - 项目类别:
Discovery Grants Program - Individual
The Solution of Partial Differential Equations on Realistic Geometries
现实几何上偏微分方程的解
- 批准号:
RGPIN-2020-06022 - 财政年份:2020
- 资助金额:
$ 6万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: CDS&E: A framework for solution of coupled partial differential equations on heterogeneous parallel systems
合作研究:CDS
- 批准号:
2003747 - 财政年份:2020
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: A framework for solution of coupled partial differential equations on heterogeneous parallel systems
合作研究:CDS
- 批准号:
2004236 - 财政年份:2020
- 资助金额:
$ 6万 - 项目类别:
Standard Grant