Research in Statistical Physics

统计物理研究

基本信息

  • 批准号:
    9820824
  • 负责人:
  • 金额:
    $ 16.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-06-01 至 2003-05-31
  • 项目状态:
    已结题

项目摘要

It is proposed to continue the work of the Principal Investigator and collaborators on the connections between non-equilibrium statistical mechanics and dynamical systems theory. The central idea of this work is to relate transport and other nonequilibrium properties, such as entropy production, of fluid systems to the underlying chaotic dynamics of the constituent particles of the fluid. Work by the PI and collaborators over the past few years has shown that Boltzmann equation techniques and related methods of nonequilibrium statistical mechanics can be fruitfully applied to calculate not only transport properties of fluids but their chaotic properties as well. This unified approach allows one to make the connections between transport and chaotic properties especially clear. Work on model systems has led to the development of advanced methods which allow detailed analytic calculations of the chaotic properties of more realistic systems where all of the particles can move. It has been possible, for example, to compute the Kolmogorov-Sinai entropy of a dilute gas of hard disks or of hard spheres. These systems are still quite complicated mathematically, and many interesting features of their chaotic behavior are related to the semi-dispersive nature of the particle collisions. It is proposed here: (a) to continue the work on analytic methods to compute the chaotic properties, of dense Lorentz gas systems; (b) to carry out similar calculations for more realistic systems, namely, for dilute and moderately dense gases of particles interacting with short ranged forces; (c) to continue the work of the PI and collaborators on the connection between the irreversible entropy production of irreversible thermodynamics and seemingly closely related quantities that appear naturally in the dynamical systems theory approach to transport; and (d) to extend these methods and results to the quantum case. The latter point is of major importance since: (a) nature is fundamentally quantum mechanical rather than classical, (b) many deep and basic questions need to be answered before one has any clear understanding of how classical chaos emerges from quantum systems, and (c) quantum systems such as quantum dots and quantum anti-dots are of great physical and practical interest.
建议继续主要研究员和合作者关于非平衡统计力学和动力系统理论之间联系的工作。 这项工作的中心思想是将流体系统的输运和其他非平衡性质(如熵产生)与流体组成粒子的混沌动力学联系起来。 PI和合作者在过去几年的工作表明,玻尔兹曼方程技术和非平衡统计力学的相关方法不仅可以有效地应用于计算流体的输运性质,还可以计算它们的混沌性质。 这种统一的方法使人们能够使运输和混沌属性之间的联系特别清楚。 对模型系统的研究导致了先进方法的发展,这些方法允许对所有粒子都可以移动的更现实系统的混沌特性进行详细的分析计算。 例如,可以计算硬盘或硬球的稀释气体的柯尔莫哥洛夫-西奈熵。 这些系统在数学上仍然相当复杂,它们的混沌行为的许多有趣的特征与粒子碰撞的半色散性质有关。兹建议:(a)继续研究计算稠密洛伦兹气体系统混沌特性的分析方法;(B)对更现实的系统进行类似的计算,即对与短程力相互作用的粒子的稀气体和中等稠密气体进行类似的计算;(c)第(1)款继续PI和合作者的工作,研究不可逆热力学的不可逆熵产生与看似密切的在动力系统理论中自然出现的相关量;以及(d)将这些方法和结果扩展到量子情况。 后一点非常重要,因为:(a)自然从根本上说是量子力学的,而不是经典的;(B)在人们对量子系统如何产生经典混沌有任何清楚的理解之前,需要回答许多深刻和基本的问题;(c)量子系统,如量子点和量子反点,具有很大的物理和实际意义。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

J. Robert Dorfman其他文献

J. Robert Dorfman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('J. Robert Dorfman', 18)}}的其他基金

Research in Statistical Physics
统计物理研究
  • 批准号:
    0138697
  • 财政年份:
    2002
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Continuing Grant
Research in Statistical Physics
统计物理研究
  • 批准号:
    9600428
  • 财政年份:
    1996
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Continuing Grant
Research in Statistical Physics
统计物理研究
  • 批准号:
    9321312
  • 财政年份:
    1994
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Research in Nonequilibrium Statistical Mechanics of Classical and Quantum Fluids (Materials Research)
经典和量子流体的非平衡统计力学研究(材料研究)
  • 批准号:
    8309449
  • 财政年份:
    1983
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Continuing Grant
Research in Statistical Physics
统计物理研究
  • 批准号:
    8015976
  • 财政年份:
    1980
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Continuing Grant
Research in Statistical Physics
统计物理研究
  • 批准号:
    7716308
  • 财政年份:
    1977
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: AF: Medium: Markov Chain Algorithms for Problems from Computer Science, Statistical Physics and Self-Organizing Particle Systems
合作研究:AF:中:计算机科学、统计物理和自组织粒子系统问题的马尔可夫链算法
  • 批准号:
    2106917
  • 财政年份:
    2021
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Markov Chain Algorithms for Problems from Computer Science, Statistical Physics and Self-Organizing Particle Systems
合作研究:AF:中:计算机科学、统计物理和自组织粒子系统问题的马尔可夫链算法
  • 批准号:
    2106687
  • 财政年份:
    2021
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Assessing Undergraduate Student Learning in Upper-Level Courses in Thermal and Statistical Physics
合作研究:评估本科生在热物理和统计物理高级课程中的学习情况
  • 批准号:
    2013332
  • 财政年份:
    2020
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Assessing Undergraduate Student Learning in Upper-Level Courses in Thermal and Statistical Physics
合作研究:评估本科生在热物理和统计物理高级课程中的学习情况
  • 批准号:
    2013339
  • 财政年份:
    2020
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Unraveling Cerebral Connectivity with Diffusion MRI, Microscopy and Statistical Physics
合作研究:利用扩散 MRI、显微镜和统计物理学揭示大脑连通性
  • 批准号:
    1504804
  • 财政年份:
    2015
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Unraveling Cerebral Connectivity with Diffusion MRI, Microscopy and Statistical Physics
合作研究:利用扩散 MRI、显微镜和统计物理学揭示大脑连通性
  • 批准号:
    1505000
  • 财政年份:
    2015
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Continuing Grant
AF: Medium: Collaborative Research: Information Compression in Algorithm Design and Statistical Physics
AF:媒介:协作研究:算法设计和统计物理中的信息压缩
  • 批准号:
    1514128
  • 财政年份:
    2015
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
AF: Medium: Collaborative Research: Information Compression in Algorithm Design and Statistical Physics
AF:媒介:协作研究:算法设计和统计物理中的信息压缩
  • 批准号:
    1514164
  • 财政年份:
    2015
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
AF: Medium: Collaborative Research: Information Compression in Algorithm Design and Statistical Physics
AF:媒介:协作研究:算法设计和统计物理中的信息压缩
  • 批准号:
    1514434
  • 财政年份:
    2015
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Statistical Physics of Fault Behavior - Dynamic Friction, Strain Localization, Comminution, Heat Transfer, and Compaction
合作研究:故障行为的统计物理 - 动态摩擦、应变局部化、粉碎、传热和压实
  • 批准号:
    1345108
  • 财政年份:
    2014
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了