AF: Medium: Collaborative Research: Information Compression in Algorithm Design and Statistical Physics

AF:媒介:协作研究:算法设计和统计物理中的信息压缩

基本信息

  • 批准号:
    1514164
  • 负责人:
  • 金额:
    $ 46.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-06-15 至 2020-05-31
  • 项目状态:
    已结题

项目摘要

The existence of connections between probabilistic algorithms, statistical physics and information theory has been known for decades and has yielded a number of unexpected breakthroughs. Recent discoveries of the PIs and other researchers give clear indications that these connections go much deeper than previously thought. A key new idea is the realization that stochastic local search algorithms can be judged by their capacity to compress the randomness they consume, with convergence following as a consequence of compressibility. Further exploration of this idea is expected to have significant impact, both conceptual and technical, in multiple scientific fields. This includes algorithm design by information theoretic methods, the study of phase transitions in statistical mechanical systems based on information bottleneck arguments, and non-constructive proofs of existence of combinatorial objects. The project will offer a wide range of research opportunities at various levels of sophistication for graduate and undergraduate students in three state universities.Information compression arguments have recently found striking applications in computer science and combinatorics. A glowing example is Moser's proof of the algorithmic Lovasz Local Lemma, which suggested an entirely new way of reasoning about randomized algorithms. Inspired by the work of Moser, one of the PIs with a collaborator has very recently created a general framework for analyzing stochastic local search algorithms using information compression. The framework is purely algorithmic, completely bypassing the Probabilistic Method. Besides helping to analyze the running times of existing algorithms it can also be used as a powerful new tool for designing novel, non-obvious randomized algorithms. The proposed research further develops this framework with the aim of unearthing completely new applications in computer science and combinatorics, while establishing mathematically rigorous connections to statistical physics. Concrete examples of such applications to be investigated include new tools for bounding the mixing time of Markov chains and algebraic connections between randomized algorithms and the classical theory of phase transitions in statistical physics.
概率算法、统计物理和信息论之间的联系已经存在了几十年,并产生了一些意想不到的突破。PI和其他研究人员的最新发现清楚地表明,这些联系比之前想象的要深入得多。一个关键的新想法是认识到,随机局部搜索算法可以通过它们压缩其消耗的随机性的能力来判断,而收敛是可压缩性的结果。对这一想法的进一步探索预计将在多个科学领域产生重大的概念和技术影响。这包括用信息论方法进行算法设计,基于信息瓶颈论证的统计力学系统相变的研究,以及组合对象存在的非构造性证明。该项目将为三所州立大学的研究生和本科生提供不同程度的复杂程度的广泛研究机会。信息压缩论点最近在计算机科学和组合学中得到了引人注目的应用。一个热闹的例子是莫泽对算法Lovasz局部引理的证明,它提出了一种关于随机算法的全新推理方式。受Moser工作的启发,其中一个与合作者合作的PI最近创建了一个通用框架,用于使用信息压缩来分析随机本地搜索算法。该框架纯粹是算法,完全绕过了概率方法。除了帮助分析现有算法的运行时间外,它还可以作为一个强大的新工具来设计新的、不明显的随机算法。这项拟议的研究进一步发展了这一框架,目的是挖掘计算机科学和组合学中的全新应用,同时建立与统计物理的严格数学联系。有待研究的这类应用的具体例子包括限制马尔可夫链混合时间的新工具,以及随机算法与统计物理中的经典相变理论之间的代数联系。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Non-Hardness of Approximating Circuit Size
近似电路尺寸的非困难性
  • DOI:
    10.1007/978-3-030-19955-5_2
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    Allender, Eric;Ilango, Rahul;Vafa, Neekon
  • 通讯作者:
    Vafa, Neekon
Ker-I Ko and the Study of Resource-Bounded Kolmogorov Complexity
Ker-I Ko 与资源有限 Kolmogorov 复杂性研究
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eric Allender其他文献

NL-printable sets and Nondeterministic Kolmogorov Complexity
NL 可打印集和非确定性柯尔莫哥洛夫复杂度
  • DOI:
    10.1016/s1571-0661(04)80838-7
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eric Allender
  • 通讯作者:
    Eric Allender
Uniform derandomization from pathetic lower bounds
从可悲的下限进行统一去随机化
Curiouser and Curiouser: The Link between Incompressibility and Complexity
  • DOI:
    10.1007/978-3-642-30870-3_2
  • 发表时间:
    2012-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eric Allender
  • 通讯作者:
    Eric Allender
Complexity of Regular Functions
常规函数的复杂性
  • DOI:
    10.1007/978-3-319-15579-1_35
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eric Allender;Ian Mertz
  • 通讯作者:
    Ian Mertz
New Insights on the (Non-)Hardness of Circuit Minimization and Related Problems
关于电路最小化的(非)难度及相关问题的新见解

Eric Allender的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eric Allender', 18)}}的其他基金

AF: Small: Algebraic Methods in Codes and Computation
AF:小:代码和计算中的代数方法
  • 批准号:
    1909683
  • 财政年份:
    2019
  • 资助金额:
    $ 46.13万
  • 项目类别:
    Standard Grant
AF: Small: Computational Complexity Theory and Circuit Complexity
AF:小:计算复杂性理论和电路复杂性
  • 批准号:
    1909216
  • 财政年份:
    2019
  • 资助金额:
    $ 46.13万
  • 项目类别:
    Standard Grant
AF: Student Travel to Clay Mathematics Institute Complexity Workshop
AF:学生前往克莱数学研究所复杂性研讨会
  • 批准号:
    1809703
  • 财政年份:
    2018
  • 资助金额:
    $ 46.13万
  • 项目类别:
    Standard Grant
EAGER: AF: New approaches to hardness for circuit minimization
EAGER:AF:电路最小化硬度的新方法
  • 批准号:
    1555409
  • 财政年份:
    2015
  • 资助金额:
    $ 46.13万
  • 项目类别:
    Standard Grant
AF: Medium: Computational Complexity Theory and Circuit Complexity
AF:中:计算复杂性理论和电路复杂性
  • 批准号:
    1064785
  • 财政年份:
    2011
  • 资助金额:
    $ 46.13万
  • 项目类别:
    Standard Grant
Computational Complexity Theory and Circuit Complexity
计算复杂性理论和电路复杂性
  • 批准号:
    0830133
  • 财政年份:
    2008
  • 资助金额:
    $ 46.13万
  • 项目类别:
    Continuing Grant
Theory and Practice of Secure Computation
安全计算理论与实践
  • 批准号:
    0728937
  • 财政年份:
    2007
  • 资助金额:
    $ 46.13万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Algorithmic Randomness
FRG:协作研究:算法随机性
  • 批准号:
    0652582
  • 财政年份:
    2007
  • 资助金额:
    $ 46.13万
  • 项目类别:
    Continuing Grant
Computational Complexity Theory and Circuit Complexity
计算复杂性理论和电路复杂性
  • 批准号:
    0514155
  • 财政年份:
    2005
  • 资助金额:
    $ 46.13万
  • 项目类别:
    Continuing Grant
Computational Complexity Theory and Circuit Complexity
计算复杂性理论和电路复杂性
  • 批准号:
    0104823
  • 财政年份:
    2001
  • 资助金额:
    $ 46.13万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402836
  • 财政年份:
    2024
  • 资助金额:
    $ 46.13万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
  • 批准号:
    2402851
  • 财政年份:
    2024
  • 资助金额:
    $ 46.13万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
  • 批准号:
    2422926
  • 财政年份:
    2024
  • 资助金额:
    $ 46.13万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
  • 批准号:
    2402283
  • 财政年份:
    2024
  • 资助金额:
    $ 46.13万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
  • 批准号:
    2402852
  • 财政年份:
    2024
  • 资助金额:
    $ 46.13万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
  • 批准号:
    2402284
  • 财政年份:
    2024
  • 资助金额:
    $ 46.13万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402837
  • 财政年份:
    2024
  • 资助金额:
    $ 46.13万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402835
  • 财政年份:
    2024
  • 资助金额:
    $ 46.13万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Adventures in Flatland: Algorithms for Modern Memories
合作研究:AF:媒介:平地历险记:现代记忆算法
  • 批准号:
    2423105
  • 财政年份:
    2024
  • 资助金额:
    $ 46.13万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Sketching for privacy and privacy for sketching
合作研究:AF:中:为隐私而素描和为素描而隐私
  • 批准号:
    2311649
  • 财政年份:
    2023
  • 资助金额:
    $ 46.13万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了