A Comprehensive Framework and Software for Simulation Input
用于仿真输入的综合框架和软件
基本信息
- 批准号:9821011
- 负责人:
- 金额:$ 12.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-07-01 至 2001-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This grant provides funding for the development of a comprehensive framework for stochastic simulation input modeling that can accomplish the following: (1) represent a wide range of steady-state simulation input models, including independent univariate processes, finite-dimensional random vectors, stationary univariate time-series processes, and stationary vector-time-series processes; (2) fit these input models to data via automated algorithms while enabling intuitive, direct modification of the fitted models via the user'ssubjective judgment or partial information such as bounds, percentiles, or moments; (3) generate realizations of these input processes quickly and accurately in order to drive large-scale computer simulations; and (4) facilitate sensitivity analysis of simulation outputs with respect to simulation inputs by making the input models readily adjustable in terms of easily understood parameters. The framework will be based on the ability to represent, fit, and generate observations from a stationary multivariate vector time series in which each individual component can have either a Johnson, Bezier, or discrete marginal distribution; moreover, the dependence structure is specified via product-moment correlations between pairs of components that are separated by selected time lags. Such an input process will be constructed by an appropriate transformation of a Gaussian vector autoregressive process. The primary benefit of this research is that it will take reliable input modeling out of the domain of statistical specialists and put it into the hands of everyday simulation users. Simulation inputs form the core of every stochastic simulation model, so this will substantially improve the fidelity of practical simulation models, leading to more accurate results and better decisions. Since simulation analysts use what they find in software, the software developed in this research and made available to commercial vendors should speed the technology transfer.
该基金为随机模拟输入建模的综合框架的开发提供资金,该框架可以实现以下目标:(1)表示广泛的稳态模拟输入模型,包括独立单变量过程,有限维随机向量,平稳单变量时间序列过程和平稳向量时间序列过程;(2)通过自动算法将这些输入模型拟合到数据,同时通过用户的主观判断或部分信息(例如边界、曲线或矩)来实现对拟合模型的直观、直接修改;(3)快速准确地生成这些输入过程的实现,以驱动大规模计算机模拟;以及(4)通过使输入模型在容易调整方面容易调整,了解参数 该框架将基于从固定的多变量向量时间序列中表示、拟合和生成观测结果的能力,其中每个单独的分量可以具有约翰逊、贝塞尔或离散边缘分布;此外,依赖结构通过由选定的时间滞后分离的成对分量之间的乘积矩相关性来指定。 这样的输入过程将通过高斯向量自回归过程的适当变换来构造。 这项研究的主要好处是,它将把可靠的输入建模从统计专家的领域中解放出来,并将其交给日常模拟用户。 模拟输入是每个随机模拟模型的核心,因此这将大大提高实际模拟模型的保真度,从而获得更准确的结果和更好的决策。 由于仿真分析师使用他们在软件中找到的东西,因此在本研究中开发并提供给商业供应商的软件应该会加速技术转让。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Barry Nelson其他文献
Daily planning conversations and AI: Keys for improving construction culture, engagement, planning, and safety.
日常规划对话和人工智能:改善施工文化、参与度、规划和安全的关键。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:3.5
- 作者:
Charles B Pettinger;Barry Nelson - 通讯作者:
Barry Nelson
Simulation: The past 10 years and the next 10 years
模拟:过去10年和未来10年
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
R. Cheng;C. Macal;Barry Nelson;M. Rabe;C. Currie;J. Fowler;L. Lee - 通讯作者:
L. Lee
Barry Nelson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Barry Nelson', 18)}}的其他基金
Collaborative Research: Inference on Expensive, Grey-Box Simulation Models
合作研究:昂贵的灰盒仿真模型的推理
- 批准号:
2206973 - 财政年份:2022
- 资助金额:
$ 12.32万 - 项目类别:
Standard Grant
Collaborative Research: Adaptive Gaussian Markov Random Fields for Large-scale Discrete Optimization via Simulation
协作研究:通过仿真实现大规模离散优化的自适应高斯马尔可夫随机场
- 批准号:
1854562 - 财政年份:2019
- 资助金额:
$ 12.32万 - 项目类别:
Standard Grant
Green Simulation: A Methodology for Reusing the Output of Past Computer Simulation Experiments
绿色仿真:重用过去计算机仿真实验输出的方法
- 批准号:
1634982 - 财政年份:2017
- 资助金额:
$ 12.32万 - 项目类别:
Standard Grant
GOALI: Computer Simulation Analytics
目标:计算机模拟分析
- 批准号:
1537060 - 财政年份:2015
- 资助金额:
$ 12.32万 - 项目类别:
Standard Grant
GOALI: Quantifying Input Uncertainty in Stochastic Simulation
GOALI:量化随机模拟中的输入不确定性
- 批准号:
1068473 - 财政年份:2011
- 资助金额:
$ 12.32万 - 项目类别:
Standard Grant
Collaborative Research: QNATS - The Queueing Network Approximator for Time-Dependent Systems
合作研究:QNATS - 瞬态系统的排队网络近似器
- 批准号:
0521857 - 财政年份:2005
- 资助金额:
$ 12.32万 - 项目类别:
Standard Grant
Collaborative Research: A Framework for Effective Optimization via Simulation
协作研究:通过模拟进行有效优化的框架
- 批准号:
0217690 - 财政年份:2002
- 资助金额:
$ 12.32万 - 项目类别:
Continuing Grant
Comparisons via Stochastic Simulation, with Applications to Manufacturing and Services
通过随机模拟进行比较以及在制造和服务业中的应用
- 批准号:
9622065 - 财政年份:1996
- 资助金额:
$ 12.32万 - 项目类别:
Continuing Grant
Multiple Comparisons for Optimization via Simulation
通过模拟进行优化的多重比较
- 批准号:
8922721 - 财政年份:1990
- 资助金额:
$ 12.32万 - 项目类别:
Continuing Grant
Combined Variance Reduction and Output Analysis in Stochastic Simulation
随机模拟中的组合方差减少和输出分析
- 批准号:
8707634 - 财政年份:1987
- 资助金额:
$ 12.32万 - 项目类别:
Standard Grant
相似海外基金
CRII: CSR: Towards an Edge-enabled Software-Defined Vehicle Framework for Dynamic Over-the-Air Updates
CRII:CSR:迈向支持边缘的软件定义车辆框架,用于动态无线更新
- 批准号:
2348151 - 财政年份:2024
- 资助金额:
$ 12.32万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: Quakeworx - An extensible software framework for earthquake simulations
协作研究:框架:Quakeworx - 用于地震模拟的可扩展软件框架
- 批准号:
2311207 - 财政年份:2023
- 资助金额:
$ 12.32万 - 项目类别:
Standard Grant
DASS: A Multi-level Collaborative Design Framework for Cross-sovereignty Software Accountability
DASS:跨主权软件责任的多层次协作设计框架
- 批准号:
2317086 - 财政年份:2023
- 资助金额:
$ 12.32万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: Quakeworx - An extensible software framework for earthquake simulations
协作研究:框架:Quakeworx - 用于地震模拟的可扩展软件框架
- 批准号:
2311208 - 财政年份:2023
- 资助金额:
$ 12.32万 - 项目类别:
Standard Grant
NSF/FDA: Towards an active surveillance framework to detect AI/ML-enabled Software as a Medical Device (SaMD) data and performance drift in clinical flow
NSF/FDA:建立主动监测框架,以检测支持 AI/ML 的软件即医疗设备 (SaMD) 数据和临床流程中的性能漂移
- 批准号:
2326034 - 财政年份:2023
- 资助金额:
$ 12.32万 - 项目类别:
Standard Grant
A Safe and Efficient Framework to Continuous Integration through Repaying Self-Admitted Technical Debt in Software Development
通过偿还软件开发中自我承认的技术债务来实现持续集成的安全高效的框架
- 批准号:
23KJ1589 - 财政年份:2023
- 资助金额:
$ 12.32万 - 项目类别:
Grant-in-Aid for JSPS Fellows
CRII: CNS: A Hybrid Software Defined Networking-Information Centric Networking Framework for the Reuse of Computation at the Network Edge
CRII:CNS:一种混合软件定义网络-以信息为中心的网络框架,用于在网络边缘重用计算
- 批准号:
2306685 - 财政年份:2023
- 资助金额:
$ 12.32万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: Quakeworx - An extensible software framework for earthquake simulations
协作研究:框架:Quakeworx - 用于地震模拟的可扩展软件框架
- 批准号:
2311206 - 财政年份:2023
- 资助金额:
$ 12.32万 - 项目类别:
Standard Grant
Collaborative Research: Elements: Software: Software Health Monitoring and Improvement Framework
协作研究:要素:软件:软件健康监控和改进框架
- 批准号:
2227248 - 财政年份:2022
- 资助金额:
$ 12.32万 - 项目类别:
Standard Grant
A Comprehensive Framework for the Automatic Evaluation of the Quality of ML-based Software Systems
基于机器学习的软件系统质量自动评估的综合框架
- 批准号:
561420-2020 - 财政年份:2022
- 资助金额:
$ 12.32万 - 项目类别:
Alliance Grants