Chaos with Multiple Positive Lyapunov Exponents
具有多个正李亚普诺夫指数的混沌
基本信息
- 批准号:9870183
- 负责人:
- 金额:$ 33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-08-01 至 2001-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9870183YorkeChaotic dynamics has been a fertile area of mathematical research in recent years, and chaos has now been observed in many scientific fields. Much of the progress to date in the study of chaotic dynamics has focused on low-dimensional systems, and many phenomena are well understood in certain low-dimensional cases. Even when systems with higher-dimensional state spaces are considered, often the dynamics takes place on a low-dimensional attractor (by "low", we mean up to dimension 2 for maps and 3 for flows). This proposal seeks to explore how some of the phenomena associated with chaotic dynamical systems extend to cases that are fundamentally higher-dimensional -- that is, when the system is expanding in more than one dimension, or in otherwords has more than one positive Lyapunov exponent.Higher-dimensional chaos can occur in models of many engineering devices and in meteorological models and climate models. This research will tell us, for example, if mathematical models can suddenly get trapped in artificial windows of regular behavior. These windows would be artificial in that any realistic level of noise would disrupt the regular behavior. Our research will also shed light on the reliability of computer simulations for higher dimensional models. This study is critical to realistic modeling of complex systems.
近年来,混沌动力学一直是数学研究的一个丰富领域,现在在许多科学领域都观察到了混沌。迄今为止,混沌动力学研究的大部分进展都集中在低维系统上,许多现象在某些低维情况下得到了很好的理解。即使考虑到具有高维状态空间的系统,动态也经常发生在低维吸引子上(这里的“低”指的是地图的2维和流的3维)。本提案旨在探索与混沌动力系统相关的一些现象如何扩展到基本高维的情况-即当系统在不止一个维度上扩展时,或者换句话说,具有不止一个正李雅普诺夫指数。高维混沌可以出现在许多工程装置的模型中,也可以出现在气象模型和气候模型中。例如,这项研究将告诉我们,数学模型是否会突然被困在常规行为的人工窗口中。这些窗户将是人造的,因为任何实际水平的噪音都会破坏正常的行为。我们的研究还将阐明计算机模拟高维模型的可靠性。该研究对复杂系统的真实建模具有重要意义。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Yorke其他文献
What is the graph of a dynamical system?
- DOI:
10.1007/s11071-025-11466-9 - 发表时间:
2025-07-02 - 期刊:
- 影响因子:6.000
- 作者:
Chirag Adwani;Roberto De Leo;James Yorke - 通讯作者:
James Yorke
James Yorke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Yorke', 18)}}的其他基金
Mathematical Modeling of DNA Repeats and HIV Epidemics
DNA 重复和 HIV 流行的数学模型
- 批准号:
0616585 - 财政年份:2006
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Improving overlap-finding techniques for whole genome shotgun data
改进全基因组鸟枪数据的重叠查找技术
- 批准号:
0312360 - 财政年份:2003
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Mathematical Sciences: "Chaos with Multiple Positive Lyapunov Exponents
数学科学:“具有多个正李雅普诺夫指数的混沌
- 批准号:
9423843 - 财政年份:1995
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Attractor Reconstruction from Experimental Data
根据实验数据重建吸引子
- 批准号:
9116391 - 财政年份:1992
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Mathematical Sciences: Bifurcation and Global Continuation
数学科学:分岔和全局延拓
- 批准号:
8117967 - 财政年份:1982
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Qualitative Behavior For Generalized Dynamical Processes
广义动态过程的定性行为
- 批准号:
7818221 - 财政年份:1979
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Qualitative Behavior For Generalized Dynamical Processes
广义动态过程的定性行为
- 批准号:
7624432 - 财政年份:1976
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Qualitative Behavior For Generalized Dynamical Processes
广义动态过程的定性行为
- 批准号:
7424310 - 财政年份:1974
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
相似国自然基金
基于Multiple Collocation的北半球多源雪深数据长时序融合研究
- 批准号:42001289
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
GmPcides: Componds that disarm antibiotic resistance in multiple gram-positive pathogens
GmPcides:解除多种革兰氏阳性病原体抗生素耐药性的化合物
- 批准号:
10577811 - 财政年份:2021
- 资助金额:
$ 33万 - 项目类别:
GmPcides: Componds that disarm antibiotic resistance in multiple gram-positive pathogens
GmPcides:解除多种革兰氏阳性病原体抗生素耐药性的化合物
- 批准号:
10162829 - 财政年份:2021
- 资助金额:
$ 33万 - 项目类别:
GmPcides: Componds that disarm antibiotic resistance in multiple gram-positive pathogens
GmPcides:解除多种革兰氏阳性病原体抗生素耐药性的化合物
- 批准号:
10352471 - 财政年份:2021
- 资助金额:
$ 33万 - 项目类别:
Towards a built environment with net-positive impact along multiple dimensions of sustainability
打造对可持续发展多个维度产生净积极影响的建筑环境
- 批准号:
556519-2020 - 财政年份:2020
- 资助金额:
$ 33万 - 项目类别:
University Undergraduate Student Research Awards
Elucidation of progressive pathology using PD-1 positive T cells in multiple sclerosis
使用 PD-1 阳性 T 细胞阐明多发性硬化症的进行性病理学
- 批准号:
18K15453 - 财政年份:2018
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Research on multiple zeta values of non-positive indices based on Kawashima functions
基于Kawashima函数的非正指标多zeta值研究
- 批准号:
18K03221 - 财政年份:2018
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Human Recruitment System Based on Multiple Intelligence and Positive Psychology
基于多元智能和积极心理学的人才招聘系统
- 批准号:
23730379 - 财政年份:2011
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Novel therapeutic approach for multiple sclerosis using TGF-β-positive regulatory T cell
使用 TGF-β 阳性调节性 T 细胞治疗多发性硬化症的新方法
- 批准号:
19590995 - 财政年份:2007
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical Sciences: "Chaos with Multiple Positive Lyapunov Exponents
数学科学:“具有多个正李雅普诺夫指数的混沌
- 批准号:
9423843 - 财政年份:1995
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Normative and Positive Study of the Self-Organized Development of Large Scale Multiple Rice Farmers : Creation of Ex Ante Data and Grasp of Potential Economic Performance
规模化稻农自组织发展的规范实证研究:事前数据的创造与潜在经济绩效的把握
- 批准号:
05451123 - 财政年份:1993
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)