Numerical Modeling of Problems in Liquid Crystals
液晶问题的数值模拟
基本信息
- 批准号:9870420
- 负责人:
- 金额:$ 6.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-07-15 至 2001-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This grant supports ongoing research in the area of numerical modeling of basic and applied problems that arise in the physics of liquid crystals. The work is interdisciplinary in nature, involving collaborations with physicists in the Liquid Crystal Institute at Kent State University as well as with computer scientists and applied and computational mathematicians at Kent, Purdue University, and the Courant Institute. The emphases of the work will be in three project areas: (1) numerical modeling of equilibrium orientational properties of confined liquid crystal materials, (2) developing and utilizing modern CS problem-solving environments (for rapid prototyping of such numerical codes and packages), and (3) numerical modeling of the interaction between a laser beam and the liquid-crystal medium through which it is propagating (to investigate and validate modeling and asymptotic analyses performed on such a system by a group at Courant). Liquid Crystals are materials capable of existing in states (call "mesophases") in between solids and liquids. They enjoy properties of both. They are fluid; yet their molecules tend to orient themselves in certain preferred ways (depending on inter-molecular forces, geometry, conditions at boundaries, external applied electric or magnetic fields, and the like). They have significant commercial importance because of applications in the display industry. Modern liquid crystal devices (with microscopic geometry and interfering neighboring effects) now require considerable two- and three-dimensional numerical modeling for analysis and design. The proposed work will contribute to the advancement of the general state of the art for this type of scientific computing while numerically modeling specific systems of current interest.
该补助金支持正在进行的研究领域, 液晶物理中出现的基本和应用问题的数值模拟。 这项工作是跨学科的 在自然界中,包括与液体物理学家的合作, 肯特州立大学水晶研究所以及与 计算机科学家、应用数学家和计算数学家 在肯特,普渡大学,和柯朗研究所。 的 工作的重点将在三个项目领域:(1)数字 平衡取向性质的模拟 液晶材料,(2)开发和利用现代CS解决问题的环境(用于这种数字的快速原型制作), 代码和软件包),以及(3)相互作用的数值模拟 在激光束和它所通过的液晶介质之间 正在传播(调查和验证建模和渐近 由Courant的一个小组在这样的系统上进行的分析)。 液晶是一种能够以不同状态存在的材料 (call“中间相”)。 他们享受 两者的属性。 它们是流体,但它们的分子倾向于 以某些首选方式定位自己(取决于 分子间力,几何形状,边界条件, 外部施加的电场或磁场等)。 由于其应用范围广, 在显示器行业。 现代液晶器件(具有 微观几何和干扰邻近效应)现在 需要大量的二维和三维数值模拟 用于分析和设计。 拟议的工作将有助于推进这一类型的一般国家的艺术 科学计算的同时, 当前感兴趣的系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eugene Gartland其他文献
Eugene Gartland的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eugene Gartland', 18)}}的其他基金
Numerical Methods for Large Scale Liquid Crystal Director Models and Analysis of Electric-Field-Induced Instabilities
大规模液晶导向器模型的数值方法和电场引起的不稳定性分析
- 批准号:
1211597 - 财政年份:2012
- 资助金额:
$ 6.85万 - 项目类别:
Standard Grant
Modeling, Computation, and Analysis of Complex Liquid Crystal Systems and Transitions
复杂液晶系统和转变的建模、计算和分析
- 批准号:
0608670 - 财政年份:2006
- 资助金额:
$ 6.85万 - 项目类别:
Standard Grant
Numerical Modeling for Liquid Crystal Devices
液晶器件的数值建模
- 批准号:
0107761 - 财政年份:2001
- 资助金额:
$ 6.85万 - 项目类别:
Standard Grant
Mathematical Sciences: Mathematical Analysis of Problems in Liquid Crystals
数学科学:液晶问题的数学分析
- 批准号:
9310733 - 财政年份:1993
- 资助金额:
$ 6.85万 - 项目类别:
Standard Grant
Mathematical Sciences: Numerical Analysis of Problems in Liquid Crystals and Singular Perturbations
数学科学:液晶问题和奇异扰动的数值分析
- 批准号:
9107434 - 财政年份:1991
- 资助金额:
$ 6.85万 - 项目类别:
Standard Grant
Mathematical Sciences: A Conference on Approximation Theory and Numerical Linear Algebra, Kent, Ohio, March 30 - April 1, 1989
数学科学:近似理论和数值线性代数会议,俄亥俄州肯特,1989 年 3 月 30 日至 4 月 1 日
- 批准号:
8819494 - 财政年份:1989
- 资助金额:
$ 6.85万 - 项目类别:
Standard Grant
Numerical Analysis of Singular Perturbations and Convection-Diffusion Equations
奇异扰动和对流扩散方程的数值分析
- 批准号:
8806733 - 财政年份:1988
- 资助金额:
$ 6.85万 - 项目类别:
Continuing grant
Mathematical Sciences: Uniform High-Order Differences for Convection-Dominated Differential Equations in 1 and 2 Dimensions
数学科学:一维和二维对流主导微分方程的一致高阶差分
- 批准号:
8896132 - 财政年份:1987
- 资助金额:
$ 6.85万 - 项目类别:
Standard Grant
Mathematical Sciences: Uniform High-Order Differences for Convection-Dominated Differential Equations in 1 and 2 Dimensions
数学科学:一维和二维对流主导微分方程的一致高阶差分
- 批准号:
8602199 - 财政年份:1986
- 资助金额:
$ 6.85万 - 项目类别:
Standard Grant
相似国自然基金
Galaxy Analytical Modeling
Evolution (GAME) and cosmological
hydrodynamic simulations.
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
Mathematical Problems Modeling Nematic Liquid Crystals: from Macroscopic to Microscopic Theories
向列液晶建模的数学问题:从宏观到微观理论
- 批准号:
2307525 - 财政年份:2023
- 资助金额:
$ 6.85万 - 项目类别:
Standard Grant
New paradigms for rigorous modeling and fast solution of large-scale EMC problems
大规模 EMC 问题的严格建模和快速解决方案的新范例
- 批准号:
RGPIN-2018-05289 - 财政年份:2022
- 资助金额:
$ 6.85万 - 项目类别:
Discovery Grants Program - Individual
High-dimensional Data Analysis: Modeling Unobserved Heterogeneity in Data, and Studying Imbalanced Classification Problems
高维数据分析:对数据中未观察到的异质性进行建模,并研究不平衡分类问题
- 批准号:
RGPIN-2020-05011 - 财政年份:2022
- 资助金额:
$ 6.85万 - 项目类别:
Discovery Grants Program - Individual
High-dimensional Data Analysis: Modeling Unobserved Heterogeneity in Data, and Studying Imbalanced Classification Problems
高维数据分析:对数据中未观察到的异质性进行建模,并研究不平衡分类问题
- 批准号:
RGPIN-2020-05011 - 财政年份:2021
- 资助金额:
$ 6.85万 - 项目类别:
Discovery Grants Program - Individual
Modeling, Analysis, and Computation for Problems from Biology and Industry
生物学和工业问题的建模、分析和计算
- 批准号:
RGPIN-2016-05306 - 财政年份:2021
- 资助金额:
$ 6.85万 - 项目类别:
Discovery Grants Program - Individual
LEAPS-MPS: Advancing Approximation of Heterogeneous Multi-Objective Set Covering Problems with Modeling and Applications
LEAPS-MPS:通过建模和应用推进异构多目标集覆盖问题的逼近
- 批准号:
2137622 - 财政年份:2021
- 资助金额:
$ 6.85万 - 项目类别:
Standard Grant
Novel Modeling and Analytical Approaches for Two-stage Assembly and Related Lot Streaming Problems
两阶段装配及相关批次流问题的新颖建模和分析方法
- 批准号:
2034503 - 财政年份:2021
- 资助金额:
$ 6.85万 - 项目类别:
Standard Grant
New paradigms for rigorous modeling and fast solution of large-scale EMC problems
大规模 EMC 问题的严格建模和快速解决方案的新范例
- 批准号:
RGPIN-2018-05289 - 财政年份:2021
- 资助金额:
$ 6.85万 - 项目类别:
Discovery Grants Program - Individual
Computational Problems & Cognitive Functions: Modeling, Characterizations, and Solutions
计算问题
- 批准号:
RGPIN-2016-05505 - 财政年份:2021
- 资助金额:
$ 6.85万 - 项目类别:
Discovery Grants Program - Individual
Modeling, Analysis, and Computation for Problems from Biology and Industry
生物学和工业问题的建模、分析和计算
- 批准号:
RGPIN-2016-05306 - 财政年份:2020
- 资助金额:
$ 6.85万 - 项目类别:
Discovery Grants Program - Individual