Modeling, Analysis, and Computation for Problems from Biology and Industry

生物学和工业问题的建模、分析和计算

基本信息

  • 批准号:
    RGPIN-2016-05306
  • 负责人:
  • 金额:
    $ 3.35万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

My long-term research objective is to develop evolution differential equation based mathematical models and numerical methods for problems motivated by industrial applications and other scientific disciplines. As the source of these problems evolves, my research program maintains a balanced approach between continuing existing research topics and developing new research directions, which is reflected in the current proposal. This proposal aims at analyzing and developing new mathematical models, methods and algorithms for three classes of problems with complex structures: (i) multi-scale systems of reaction- and electro-diffusion equations applied to physiology and pathology, (ii) transport equations applied to coupled mass transfer and fluid flow problems, and (iii) Hamilton-Jacobi-Bellman equation applied to optimal control in finance. 1. Spreading depression (SD) of brain cell electric activities is a relatively new area for me, but also an under-developed area from modeling point of view. - Cell membrane dynamics (1A) and local field potential (1B) during SD are of theoretical interest. - Asymptotic analysis (1C) of Poisson-Nernst-Planck (PNP) system and homogenization (1D) of PNP system are challenging problems with multiple time and spatial scales. - The objective of ion channel model and computation (1E) is to derive approximate flux formula that are more accurate than the current Hodgkin-Huxley and Goldman-Hodgkin-Katz models. 2. Extensional flow of polymer fibers is a new direction. - A combined initial- and boundary-value problem will be theoretically analyzed, which has not yet been investigated (2A). - Stability analysis will be carried out for the effects of temperature and chemical reaction (2B). 3. Extension of the immersed boundary framework to mass transfer problems is one of my ongoing research topics. - A method will be developed for interface permeable to both solvent and solute (3A: Navier-Stokes equations coupled with mass transfer equation). - This method will be extended to ion transport coupled with fluid flows at immersed interfaces (3B: Navier-Stokes with PNP equations). 4. Risk modeling and control in personal finance and retirement planning is a long-term research topic of mine. - Product allocation (4A) & taxation and borrowing constraints (4B) are technically challenging compared to the typical optimal control lifecycle framework but can still be formulated using the Hamilton-Jacobi-Bellman equation. - Incorporating income/health shocks into a lifecycle model (4C) involves modelling and is more open ended. Nevertheless, we hope to make some progress by starting with simple jump processes such as Poisson one for shocks and a recursive utility function that separates risk aversion and intertemporal substitution.
我的长期研究目标是开发基于演化微分方程的数学模型和数值方法,用于工业应用和其他科学学科的问题。随着这些问题的根源不断演变,我的研究计划在继续现有的研究课题和开发新的研究方向之间保持平衡,这反映在当前的提案中。 该提案旨在分析和开发三类具有复杂结构的问题的新数学模型,方法和算法:(i)应用于生理学和病理学的反应和电扩散方程的多尺度系统,(ii)应用于耦合质量传递和流体流动问题的传输方程,以及(iii)应用于金融最优控制的Hamilton-Jacobi-Bellman方程。 1.脑细胞电活动的扩散抑制(SD)对我来说是一个相对较新的领域,但从建模的角度来看,也是一个欠发达的领域。 - SD期间的细胞膜动力学(1A)和局部场电位(1B)具有理论意义。 - Poisson-Nernst-Planck(PNP)系统的渐近分析(1C)和均匀化(1D)是具有多时空尺度的挑战性问题。 - 离子通道模型和计算(1 E)的目的是推导出比当前的Hodgkin-Huxley和Goldman-Hodgkin-Katz模型更精确的近似通量公式。 2.聚合物纤维的拉伸流动是一个新的方向。 - 一个组合的初值和边值问题将在理论上进行分析,这还没有被研究过(2A)。 - 将对温度和化学反应的影响进行稳定性分析(2B)。 3.将浸入式边界框架扩展到传质问题是我正在进行的研究课题之一。 - 将开发一种方法,用于溶剂和溶质都可渗透的界面(3A:Navier-Stokes方程与传质方程耦合)。 - 该方法将扩展到与浸入界面处的流体流动相耦合的离子传输(3B:带有PNP方程的Navier-Stokes)。 4.个人理财和退休计划中的风险建模与控制是我长期的研究课题。 - 与典型的最优控制生命周期框架相比,产品分配(4A)和税收和借款约束(4 B)在技术上具有挑战性,但仍然可以使用Hamilton-Jacobi-Bellman方程来制定。 - 将收入/健康冲击纳入生命周期模型(4C)涉及建模,并且更具开放性。尽管如此,我们希望从简单的跳跃过程(如冲击的泊松过程)和分离风险规避和跨期替代的递归效用函数开始,取得一些进展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Huang, Huaxiong其他文献

A Simplified Neuronal Model for the Instigation and Propagation of Cortical Spreading Depression
A dynamic model of calcium signaling in mast cells and LTC4 release induced by mechanical stimuli
机械刺激诱导肥大细胞钙信号传导和 LTC4 释放的动态模型
  • DOI:
    10.1007/s11434-013-0110-8
  • 发表时间:
    2014-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yao, Wei;Huang, Huaxiong;Ding, Guanghong
  • 通讯作者:
    Ding, Guanghong
Lifetime ruin minimization: should retirees hedge inflation or just worry about it?
  • DOI:
    10.1017/s1474747211000333
  • 发表时间:
    2011-07-01
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    Huang, Huaxiong;Milevsky, Moshe A.
  • 通讯作者:
    Milevsky, Moshe A.
Mathematical approaches to modeling of cortical spreading depression
  • DOI:
    10.1063/1.4821955
  • 发表时间:
    2013-12-01
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Miura, Robert M.;Huang, Huaxiong;Wylie, Jonathan J.
  • 通讯作者:
    Wylie, Jonathan J.
Predictive models for diabetes mellitus using machine learning techniques
  • DOI:
    10.1186/s12902-019-0436-6
  • 发表时间:
    2019-10-15
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Lai, Hang;Huang, Huaxiong;Gao, Xin
  • 通讯作者:
    Gao, Xin

Huang, Huaxiong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Huang, Huaxiong', 18)}}的其他基金

Modeling, Analysis, and Computation for Problems from Biology and Industry
生物学和工业问题的建模、分析和计算
  • 批准号:
    RGPIN-2016-05306
  • 财政年份:
    2021
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Modeling, Analysis, and Computation for Problems from Biology and Industry
生物学和工业问题的建模、分析和计算
  • 批准号:
    RGPIN-2016-05306
  • 财政年份:
    2019
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Modeling and Evaluating Pulmonary Ventilation/Perfusion Mismatch
肺通气/灌注不匹配的建模和评估
  • 批准号:
    537775-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Collaborative Research and Development Grants
Modeling, Analysis, and Computation for Problems from Biology and Industry
生物学和工业问题的建模、分析和计算
  • 批准号:
    RGPIN-2016-05306
  • 财政年份:
    2018
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Modeling, Analysis, and Computation for Problems from Biology and Industry
生物学和工业问题的建模、分析和计算
  • 批准号:
    RGPIN-2016-05306
  • 财政年份:
    2017
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Modeling, Analysis, and Computation for Problems from Biology and Industry
生物学和工业问题的建模、分析和计算
  • 批准号:
    RGPIN-2016-05306
  • 财政年份:
    2016
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Optimization of a face-offsetting algorithm with applications in structural engineering design
面偏移算法的优化及其在结构工程设计中的应用
  • 批准号:
    506175-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Engage Grants Program
Modeling, analysis and computing for problems from idustry
工业问题的建模、分析和计算
  • 批准号:
    216994-2010
  • 财政年份:
    2015
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of exchange and over-the-counter asset prices - Liquidity, volatility and optimal trading strategies
交易所和场外资产价格分析——流动性、波动性和最佳交易策略
  • 批准号:
    486257-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Engage Grants Program
Modeling, analysis and computing for problems from idustry
工业问题的建模、分析和计算
  • 批准号:
    216994-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
  • 批准号:
    41601604
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
  • 批准号:
    31100958
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
  • 批准号:
    30470153
  • 批准年份:
    2004
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: A new diffuse-interface approach to ensemble average solvation energy: modeling, analysis and computation
协作研究:一种新的整体平均溶剂化能的扩散界面方法:建模、分析和计算
  • 批准号:
    2306992
  • 财政年份:
    2023
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Standard Grant
Collaborative Research: A new diffuse-interface approach to ensemble average solvation energy: modeling, analysis and computation
协作研究:一种新的整体平均溶剂化能的扩散界面方法:建模、分析和计算
  • 批准号:
    2306991
  • 财政年份:
    2023
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Standard Grant
GOALI: CNS: Medium: Communication-Computation Co-Design for Rural Connectivtiy and Intelligence under Nonuniformity: Modeling, Analysis, and Implementation
目标:CNS:媒介:非均匀性下农村互联和智能的通信计算协同设计:建模、分析和实现
  • 批准号:
    2212565
  • 财政年份:
    2022
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Standard Grant
Modeling, Analysis, Optimization, Computation, and Applications of Stochastic Systems
随机系统的建模、分析、优化、计算和应用
  • 批准号:
    2204240
  • 财政年份:
    2022
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Continuing Grant
Modeling, Analysis, and Computation for Problems from Biology and Industry
生物学和工业问题的建模、分析和计算
  • 批准号:
    RGPIN-2016-05306
  • 财政年份:
    2021
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Modeling, Mathematical Analysis, and Computation of Multiscale Systems
多尺度系统的建模、数学分析和计算
  • 批准号:
    DP200103097
  • 财政年份:
    2020
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Projects
Modeling, Analysis, and Computation in Nonlinear Elasticity
非线性弹性建模、分析和计算
  • 批准号:
    2006586
  • 财政年份:
    2020
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Standard Grant
Modeling, Analysis, and Computation for Problems from Biology and Industry
生物学和工业问题的建模、分析和计算
  • 批准号:
    RGPIN-2016-05306
  • 财政年份:
    2019
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Modeling, Analysis, and Computation of 2D Layered Materials
二维层状材料的建模、分析和计算
  • 批准号:
    1906129
  • 财政年份:
    2019
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Standard Grant
Modeling and Analysis of Neural Codes for Spatial Computation
空间计算神经代码的建模和分析
  • 批准号:
    2104586
  • 财政年份:
    2018
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了