CAREER: Cochlear Analogues for Engineering Acoustics

职业:用于工程声学的人工耳蜗类似物

基本信息

项目摘要

Karl Grosh, University of Michigan9876130Cochlear Analogues for Engineering AcousticsCochlear mechanics, engineering acoustics and active structures are fields of research where intense and exciting work is underway. In this research proposal, the three seemingly disparate areas are brought together. The performance of mammalian hearing combines remarkable transient capture and frequency filtering, with a dynamic range that can encompass at least a million-fold change in energy. The mechanical, fluid dynamical and electrical functions of the cochlea are largely responsible for these specifications, specifications which are unparalleled in man-made mechanical systems. While the current state of understanding of the function of the cochlea is incomplete, this research seeks to take advantage of the known structure-function relations of this evolutionary design for engineering acoustics. For applications ranging from sound quieting to sound sensing, the cochlear analogue design holds great potential for improving frequency selectivity and sensitivity. One such application centers on utilizing the structural acoustic filtering of the cochlea for sound attenuation, i.e., as a quieting mechanism, to augment and even replace widely used silencers (such as mufflers). A cochlear-based microphone and hydrophone transducer is also studied. Advanced modeling of the unsteady fluid-structure interaction problem is undertaken to provide design tools and to understand phenomena. Various realizations of designs for hydraulic and air borne acoustic systems are modeled, built and tested. The success of this line of research will significantly change the sound quieting (e.g., muffler) and transducer (e.g., microphone) industries. In addition, better understanding of cochlear analogues will provide a better understanding of hearing processes themselves.The educational portion of this grant seeks to (1) integrate modern software including computational, analytic and graphical packages into the classroom setting and (2) increase industrial relevance by introducing case studies to classroom, stemming from both industry sponsored research projects and industry contributed case studies.
卡尔·格罗什,密歇根大学9876130工程声学耳蜗学类似物耳蜗力学、工程声学和主动结构是正在进行紧张和令人兴奋的工作的研究领域。在这项研究提案中,这三个看似不同的领域被放在了一起。哺乳动物听力的表现结合了显著的瞬时捕获和频率过滤,以及可以至少涵盖百万倍能量变化的动态范围。耳蜗的机械、流体动力和电气功能在很大程度上决定了这些规格,这些规格在人造机械系统中是无与伦比的。虽然目前对耳蜗功能的了解还不完全,但本研究试图利用工程声学这一进化设计的已知结构-功能关系。对于从声音静音到声音传感的各种应用,耳蜗模拟设计在提高频率选择性和灵敏度方面具有巨大的潜力。一种这样的应用集中在利用耳蜗声结构滤波来进行声音衰减,即作为一种静音机制,以增强甚至取代广泛使用的消音器(例如消声器)。本文还研究了一种基于耳蜗式传声器和水听器换能器。对非定常流固耦合问题进行了高级建模,以提供设计工具和理解现象。对液压和气载声学系统的各种设计实现进行了建模、建造和测试。这一系列研究的成功将极大地改变消音器(如消声器)和换能器(如麦克风)行业。此外,更好地理解耳蜗类似物将有助于更好地了解听力过程本身。这笔赠款的教育部分寻求(1)将包括计算、分析和图形包在内的现代软件整合到课堂环境中,(2)通过将案例研究引入课堂来增加行业相关性,这些案例研究源于行业赞助的研究项目和行业贡献的案例研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Karl Grosh其他文献

Wave motion in the longitudinally coupled cochlea
纵向耦合耳蜗中的波动
Prediction of the Effect of Adaptation and Active HB Mechanics on Prestin-Based Amplification Using a Macroscopic Model of the Cochlea
  • DOI:
    10.1016/j.bpj.2010.12.638
  • 发表时间:
    2011-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Julien Meaud;Karl Grosh
  • 通讯作者:
    Karl Grosh
Corrigendum to “The remarkable cochlear amplifier” [Hear. Res. 266 (1–2) (2010) 1–17]
“非凡的人工耳蜗放大器”的勘误表[Res. 266 (1–2) (2010) 1–17]
  • DOI:
    10.1016/j.heares.2011.05.020
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Jonathan Ashmore;Paul Avan;William E. Brownell;Peter Dallos;K. Dierkes;R. Fettiplace;Karl Grosh;Carole M. Hackney;A. Hudspeth;F. Jülicher;Benjamin Lindner;Pascal Martin;J. Meaud;Christine Petit;J. Santos;Barbara Canlon
  • 通讯作者:
    Barbara Canlon
Hair bundle micromechanics including stereocilia kinematics and the interaction of stimulus and bundle rate constants
发束微观力学,包括静纤毛运动学以及刺激和发束速率常数的相互作用
Sensing of sound pressure gradients by emC. elegans/em drives phonotaxis behavior
秀丽隐杆线虫通过感知声压梯度来驱动趋声行为
  • DOI:
    10.1016/j.cub.2023.08.005
  • 发表时间:
    2023-09-25
  • 期刊:
  • 影响因子:
    7.500
  • 作者:
    Can Wang;Elizabeth A. Ronan;Shin-Kwan Kim;Panagiota Kitsopoulos;Adam J. Iliff;Karl Grosh;Gun-Ho Kim;Jianfeng Liu;X.Z. Shawn Xu
  • 通讯作者:
    X.Z. Shawn Xu

Karl Grosh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Karl Grosh', 18)}}的其他基金

Using Distributed Control to Achieve One-Way Wave Propagation in Acoustic Systems
使用分布式控制实现声学系统中的单向波传播
  • 批准号:
    1761300
  • 财政年份:
    2018
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant

相似海外基金

霊長類モデル動物の蝸牛ラセン神経節細胞の加齢性変化とCochlear Synaptopathy の検討
灵长类模型动物耳蜗螺旋神经节细胞和耳蜗突触病的年龄相关变化的检查
  • 批准号:
    24K12706
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Cochlear implants and spatial hearing: Enabling access to the next dimension of hearing (Cherish)
人工耳蜗和空间听力:实现听力的下一个维度(Cherish)
  • 批准号:
    EP/Y031946/1
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Research Grant
NSF Convergence Accelerator Track M: Distributed Flexible Strain Sensors to Enable Proprioceptive Cochlear Implant Electrodes
NSF 融合加速器轨道 M:分布式柔性应变传感器支持本体感受耳蜗植入电极
  • 批准号:
    2344394
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Optimization of auditory temporal information processing mechanisms through the development of children with cochlear implants
通过人工耳蜗植入儿童的发育优化听觉时间信息处理机制
  • 批准号:
    23H01063
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Search for damage-associated molecular patterns (DAMPs) derived from cochlear hair cells and its clinical application
耳蜗毛细胞损伤相关分子模式(DAMPs)的探索及其临床应用
  • 批准号:
    23K08924
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Changes in apical cochlear mechanics after cochlear implantation
人工耳蜗植入后耳蜗顶端力学的变化
  • 批准号:
    10730981
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
Optimizing bilateral and single-sided-deafness cochlear implants for functioning in complex auditory environments
优化双侧和单侧耳聋人工耳蜗植入物以在复杂的听觉环境中发挥作用
  • 批准号:
    10654316
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
The impact of extra effort and accumulated fatigue in listeners who wear a cochlear implant
额外努力和累积疲劳对佩戴人工耳蜗的听众的影响
  • 批准号:
    10677929
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
Development of a Micro-coil Based Cochlear Implant
基于微线圈的人工耳蜗的开发
  • 批准号:
    10658004
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
Cochlear micromechanical mechanisms underlying psychoacoustic phenomena
心理声学现象背后的耳蜗微机械机制
  • 批准号:
    10715565
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了