Design and Implementation of Algorithms in Semi-Algebraic Geometry

半代数几何算法的设计与实现

基本信息

项目摘要

Algorithmic semi-algebraic geometry has attracted a lot of attention in recent years due to its applications in a range of areas such as robot motion planning, geometric modeling, computer-aided design, geometric theorem proving, mathematical investigations of real algebraic varieties, discrete and computational geometry, and molecular chemistry. This research project is concerned with several central algorithmic problems in semi-algebraic geometry.The theoretical areas to be investigated consist of various algorithmic problems in semi-algebraic geometry, their connections with several important problems in discrete and computational geometry, as well as new applications of algorithmic semi-algebraic geometry to such areas as constraint databases and control theory. The practical goal is to build a system able to compute topological invariants (such as the number of connected components, the Euler characteristic, the Betti numbers, the full homology groups) of given semi-algebraic sets. Polynomial system solving is a basic step in the algorithms for computing higher topological invariants. Powerful multivariate polynomial system solvers have recently become available. These specialized systems are more efficient than what is available in standard computer algebra packages. However, there has not been any effort to compute more geometric properties, like the number of connected components, descriptions of each connected component, the homology groups etc. The algorithms for solving these problems are considerably more complicated than those for just testing emptiness of a semi-algebraic set. Routines will be adopted from existing state-of-the-art polynomial system solvers as building blocks towards developing a software package able to answer questions about connectivity and higher homologies of semi-algebraic sets.
近年来,算法半代数几何因其在机器人运动规划、几何建模、计算机辅助设计、几何定理证明、实代数簇的数学研究、离散和计算几何以及分子化学等领域的应用而受到广泛关注。 本研究项目涉及半代数几何中的几个核心算法问题。研究的理论领域包括半代数几何中的各种算法问题、它们与离散几何和计算几何中的几个重要问题的联系,以及算法半代数几何在约束数据库和控制理论等领域的新应用。实际目标是建立一个能够计算给定半代数集的拓扑不变量(例如连通分量数、欧拉特性、贝蒂数、全同调群)的系统。多项式系统求解是计算更高拓扑不变量的算法的基本步骤。强大的多元多项式系统求解器最近已上市。这些专用系统比标准计算机代数包中提供的系统更有效。 然而,还没有做出任何努力来计算更多的几何性质,例如连通分量的数量、每个连通分量的描述、同调群等。解决这些问题的算法比仅仅测试半代数集的空性的算法要复杂得多。将采用现有最先进的多项式系统求解器中的例程作为开发软件包的构建块,该软件包能够回答有关半代数集的连通性和更高同调性的问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Saugata Basu其他文献

On Projections of Semi-Algebraic Sets Defined by Few Quadratic Inequalities
  • DOI:
    10.1007/s00454-007-9014-1
  • 发表时间:
    2007-09-15
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Saugata Basu;Thierry Zell
  • 通讯作者:
    Thierry Zell
Prevalence of Myxozoan Parasites of Riverine Fishes of Jalpaiguri District, West Bengal, India
印度西孟加拉邦贾尔派古里地区河流鱼类粘虫寄生虫的流行情况
On the Number of Topological Types Occurring in a Parameterized Family of Arrangements
  • DOI:
    10.1007/s00454-008-9079-5
  • 发表时间:
    2008-05-17
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Saugata Basu
  • 通讯作者:
    Saugata Basu
An asymptotically tight bound on the number of semi-algebraically connected components of realizable sign conditions
  • DOI:
    10.1007/s00493-009-2357-x
  • 发表时间:
    2009-09-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Saugata Basu;Richard Pollack;Marie-Françoise Roy
  • 通讯作者:
    Marie-Françoise Roy
Efficient algorithm for computing the Euler–Poincaré characteristic of a semi-algebraic set defined by few quadratic inequalities
  • DOI:
    10.1007/s00037-006-0214-5
  • 发表时间:
    2006-10-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Saugata Basu
  • 通讯作者:
    Saugata Basu

Saugata Basu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Saugata Basu', 18)}}的其他基金

Collaborative Research: AF: Small: On the Complexity of Semidefinite and Polynomial Optimization through the Lens of Real Algebraic Geometry
合作研究:AF:小:通过实代数几何的视角探讨半定和多项式优化的复杂性
  • 批准号:
    2128702
  • 财政年份:
    2021
  • 资助金额:
    $ 7.79万
  • 项目类别:
    Standard Grant
AF: Small: Symmetry, Randomness and Computations in Real Algebraic Geometry
AF:小:实代数几何中的对称性、随机性和计算
  • 批准号:
    1910441
  • 财政年份:
    2019
  • 资助金额:
    $ 7.79万
  • 项目类别:
    Standard Grant
Logic, Topology and Genomics
逻辑、拓扑和基因组学
  • 批准号:
    1620271
  • 财政年份:
    2016
  • 资助金额:
    $ 7.79万
  • 项目类别:
    Standard Grant
AF: Small: Quantitative and Algorithmic Aspects of Semi-algebraic Sets and Partitions
AF:小:半代数集和分区的定量和算法方面
  • 批准号:
    1618981
  • 财政年份:
    2016
  • 资助金额:
    $ 7.79万
  • 项目类别:
    Standard Grant
AF: Small: Algorithmic and Quantitative Semi-Algebraic Geometry and Applications
AF:小:算法和定量半代数几何及其应用
  • 批准号:
    1319080
  • 财政年份:
    2013
  • 资助金额:
    $ 7.79万
  • 项目类别:
    Standard Grant
Algorithmic Problems in Semi-algebraic Geometry and Topology
半代数几何和拓扑中的算法问题
  • 批准号:
    1036361
  • 财政年份:
    2010
  • 资助金额:
    $ 7.79万
  • 项目类别:
    Standard Grant
AF: Small: Algorithmic and Quantitative Problems in Semi-algebraic and O-minimal Geometry
AF:小:半代数和 O 最小几何中的算法和定量问题
  • 批准号:
    0915954
  • 财政年份:
    2009
  • 资助金额:
    $ 7.79万
  • 项目类别:
    Standard Grant
Algorithmic Problems in Semi-algebraic Geometry and Topology
半代数几何和拓扑中的算法问题
  • 批准号:
    0634907
  • 财政年份:
    2006
  • 资助金额:
    $ 7.79万
  • 项目类别:
    Standard Grant
CAREER: Algorithmic Semi-Algebraic Geometry and Its Applications
职业:算法半代数几何及其应用
  • 批准号:
    0133597
  • 财政年份:
    2002
  • 资助金额:
    $ 7.79万
  • 项目类别:
    Continuing Grant
Design and Implementation of Algorithms in Semi-Algebraic Geometry
半代数几何算法的设计与实现
  • 批准号:
    0049070
  • 财政年份:
    2000
  • 资助金额:
    $ 7.79万
  • 项目类别:
    Standard Grant

相似海外基金

Design and Implementation of Digital Signal Processing Algorithms for Communication and Biomedical Applications
通信和生物医学应用数字信号处理算法的设计和实现
  • 批准号:
    RGPIN-2017-06626
  • 财政年份:
    2022
  • 资助金额:
    $ 7.79万
  • 项目类别:
    Discovery Grants Program - Individual
Design and implementation of spiking neural network based speech enhancement algorithms
基于尖峰神经网络的语音增强算法的设计与实现
  • 批准号:
    RGPIN-2020-05077
  • 财政年份:
    2022
  • 资助金额:
    $ 7.79万
  • 项目类别:
    Discovery Grants Program - Individual
Design and implementation of spiking neural network based speech enhancement algorithms
基于尖峰神经网络的语音增强算法的设计与实现
  • 批准号:
    RGPAS-2020-00112
  • 财政年份:
    2022
  • 资助金额:
    $ 7.79万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Design and Implementation of Digital Signal Processing Algorithms for Communication and Biomedical Applications
通信和生物医学应用数字信号处理算法的设计和实现
  • 批准号:
    RGPIN-2017-06626
  • 财政年份:
    2021
  • 资助金额:
    $ 7.79万
  • 项目类别:
    Discovery Grants Program - Individual
Design and implementation of spiking neural network based speech enhancement algorithms
基于尖峰神经网络的语音增强算法的设计与实现
  • 批准号:
    RGPAS-2020-00112
  • 财政年份:
    2021
  • 资助金额:
    $ 7.79万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Design and implementation of spiking neural network based speech enhancement algorithms
基于尖峰神经网络的语音增强算法的设计与实现
  • 批准号:
    RGPIN-2020-05077
  • 财政年份:
    2021
  • 资助金额:
    $ 7.79万
  • 项目类别:
    Discovery Grants Program - Individual
Design and implementation of spiking neural network based speech enhancement algorithms
基于尖峰神经网络的语音增强算法的设计与实现
  • 批准号:
    RGPIN-2020-05077
  • 财政年份:
    2020
  • 资助金额:
    $ 7.79万
  • 项目类别:
    Discovery Grants Program - Individual
Design and Implementation of Digital Signal Processing Algorithms for Communication and Biomedical Applications
通信和生物医学应用数字信号处理算法的设计和实现
  • 批准号:
    RGPIN-2017-06626
  • 财政年份:
    2020
  • 资助金额:
    $ 7.79万
  • 项目类别:
    Discovery Grants Program - Individual
Design and implementation of spiking neural network based speech enhancement algorithms
基于尖峰神经网络的语音增强算法的设计与实现
  • 批准号:
    RGPAS-2020-00112
  • 财政年份:
    2020
  • 资助金额:
    $ 7.79万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Theory design and implementation of practical optimization and enumeration algorithms over graph structure
图结构实用优化和枚举算法的理论设计与实现
  • 批准号:
    20K11691
  • 财政年份:
    2020
  • 资助金额:
    $ 7.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了