Algorithmic Problems in Semi-algebraic Geometry and Topology

半代数几何和拓扑中的算法问题

基本信息

  • 批准号:
    1036361
  • 负责人:
  • 金额:
    $ 7.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-04-15 至 2011-09-30
  • 项目状态:
    已结题

项目摘要

Number: 0634907Institution: Georgia Tech Research Corporation - GA Institute of TechnologyPI: Basu, Saugata Title: Algorithmic Problems in Semi-algebraic Geometry and TopologyAbstract:Algorithmic semi-algebraic geometry lies at the heart of many problems in several different areas of computer science and mathematics including discrete and computational geometry, robot motion planning, geometric modeling, computer-aided design, geometric theorem proving, mathematical investigations of real algebraic varieties, molecular chemistry, constraint databases etc. A closely related subject area is quantitative real algebraic geometry. Results from quantitative real algebraic geometry are the basic ingredients of better algorithms in semi-algebraic geometry and play an increasingly important role in several other areas of computer science: for instance, in bounding the geometric complexity of arrangements in computational geometry, computational learning theory, proving lower bounds in computational complexity theory, convex optimization problems etc. As such algorithmic and quantitative real-algebraic geometry has been an extremely active area of research in recent years.The main research objectives would include, development of new techniques in real algebraic geometry that would lead to new and better algorithms, for computing topological invariants of semi-algebraic sets in theory, as well as practice, and bringing methods and techniques of algorithmic real algebraic geometry to bear on several open problems in discrete and computational geometry and to explore new connections, especially in the area of computational topology. The educational goals involve, developing an integrated cross-disciplinary curriculum suitable for advanced under-graduate and beginning graduate students, requiring no pre-requisite beyond college-level calculus and linear algebra, so that that they can quickly absorb the mathematical background necessary for this line of research. The broader impact of the proposed activity would include training of new graduate students in the field of algorithmic semi-algebraic geometry, as well as collaborative research spanning several different areas: real algebraic geometry, discrete and computational geometry, symbolic computation and computational complexity theory.
编号:0634907机构:格鲁吉亚技术研究公司-佐治亚理工学院PI:Basu,Saugata标题:半代数几何和拓扑中的数学问题摘要:代数半代数几何是计算机科学和数学的几个不同领域中许多问题的核心,包括离散和计算几何,机器人运动规划,几何建模,计算机辅助设计,几何定理证明,真实的代数簇的数学研究,分子化学,约束数据库等。一个密切相关的主题领域是定量真实的代数几何。从定量真实的代数几何的结果是半代数几何中更好的算法的基本成分,并且在计算机科学的其他几个领域中发挥着越来越重要的作用:例如,在计算几何学、计算学习理论中界定排列的几何复杂性,在计算复杂性理论中证明下界,凸优化问题等。因此,算法和定量实代数几何近年来一直是一个非常活跃的研究领域。主要的研究目标包括,在真实的代数几何中发展新的技术,这将导致新的和更好的算法,用于在理论上计算半代数集的拓扑不变量,以及实践,并将算法真实的代数几何的方法和技术应用于离散几何和计算几何中的几个开放问题,并探索新的联系,特别是在计算拓扑领域。教育目标包括,开发一个综合的跨学科课程适合高级本科生和开始研究生,不需要先决条件超越大学水平的微积分和线性代数,使他们能够快速吸收必要的数学背景这条线的研究。拟议活动的更广泛影响将包括在算法半代数几何领域培训新的研究生,以及跨几个不同领域的合作研究:真实的代数几何、离散和计算几何、符号计算和计算复杂性理论。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Saugata Basu其他文献

On Projections of Semi-Algebraic Sets Defined by Few Quadratic Inequalities
  • DOI:
    10.1007/s00454-007-9014-1
  • 发表时间:
    2007-09-15
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Saugata Basu;Thierry Zell
  • 通讯作者:
    Thierry Zell
Prevalence of Myxozoan Parasites of Riverine Fishes of Jalpaiguri District, West Bengal, India
印度西孟加拉邦贾尔派古里地区河流鱼类粘虫寄生虫的流行情况
On the Number of Topological Types Occurring in a Parameterized Family of Arrangements
  • DOI:
    10.1007/s00454-008-9079-5
  • 发表时间:
    2008-05-17
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Saugata Basu
  • 通讯作者:
    Saugata Basu
An asymptotically tight bound on the number of semi-algebraically connected components of realizable sign conditions
  • DOI:
    10.1007/s00493-009-2357-x
  • 发表时间:
    2009-09-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Saugata Basu;Richard Pollack;Marie-Françoise Roy
  • 通讯作者:
    Marie-Françoise Roy
Efficient algorithm for computing the Euler–Poincaré characteristic of a semi-algebraic set defined by few quadratic inequalities
  • DOI:
    10.1007/s00037-006-0214-5
  • 发表时间:
    2006-10-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Saugata Basu
  • 通讯作者:
    Saugata Basu

Saugata Basu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Saugata Basu', 18)}}的其他基金

Collaborative Research: AF: Small: On the Complexity of Semidefinite and Polynomial Optimization through the Lens of Real Algebraic Geometry
合作研究:AF:小:通过实代数几何的视角探讨半定和多项式优化的复杂性
  • 批准号:
    2128702
  • 财政年份:
    2021
  • 资助金额:
    $ 7.01万
  • 项目类别:
    Standard Grant
AF: Small: Symmetry, Randomness and Computations in Real Algebraic Geometry
AF:小:实代数几何中的对称性、随机性和计算
  • 批准号:
    1910441
  • 财政年份:
    2019
  • 资助金额:
    $ 7.01万
  • 项目类别:
    Standard Grant
Logic, Topology and Genomics
逻辑、拓扑和基因组学
  • 批准号:
    1620271
  • 财政年份:
    2016
  • 资助金额:
    $ 7.01万
  • 项目类别:
    Standard Grant
AF: Small: Quantitative and Algorithmic Aspects of Semi-algebraic Sets and Partitions
AF:小:半代数集和分区的定量和算法方面
  • 批准号:
    1618981
  • 财政年份:
    2016
  • 资助金额:
    $ 7.01万
  • 项目类别:
    Standard Grant
AF: Small: Algorithmic and Quantitative Semi-Algebraic Geometry and Applications
AF:小:算法和定量半代数几何及其应用
  • 批准号:
    1319080
  • 财政年份:
    2013
  • 资助金额:
    $ 7.01万
  • 项目类别:
    Standard Grant
AF: Small: Algorithmic and Quantitative Problems in Semi-algebraic and O-minimal Geometry
AF:小:半代数和 O 最小几何中的算法和定量问题
  • 批准号:
    0915954
  • 财政年份:
    2009
  • 资助金额:
    $ 7.01万
  • 项目类别:
    Standard Grant
Algorithmic Problems in Semi-algebraic Geometry and Topology
半代数几何和拓扑中的算法问题
  • 批准号:
    0634907
  • 财政年份:
    2006
  • 资助金额:
    $ 7.01万
  • 项目类别:
    Standard Grant
CAREER: Algorithmic Semi-Algebraic Geometry and Its Applications
职业:算法半代数几何及其应用
  • 批准号:
    0133597
  • 财政年份:
    2002
  • 资助金额:
    $ 7.01万
  • 项目类别:
    Continuing Grant
Design and Implementation of Algorithms in Semi-Algebraic Geometry
半代数几何算法的设计与实现
  • 批准号:
    0049070
  • 财政年份:
    2000
  • 资助金额:
    $ 7.01万
  • 项目类别:
    Standard Grant
Design and Implementation of Algorithms in Semi-Algebraic Geometry
半代数几何算法的设计与实现
  • 批准号:
    9901947
  • 财政年份:
    1999
  • 资助金额:
    $ 7.01万
  • 项目类别:
    Standard Grant

相似海外基金

Efficient optimization method for optimal contribution problems with semi-integer constraints
半整数约束最优贡献问题的高效优化方法
  • 批准号:
    18K11176
  • 财政年份:
    2018
  • 资助金额:
    $ 7.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of fast algorithms for semi-infinite programs with conic constraints and application to practical problems
具有二次曲线约束的半无限规划快速算法的开发及其在实际问题中的应用
  • 批准号:
    15K15943
  • 财政年份:
    2015
  • 资助金额:
    $ 7.01万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Development of algorithms for solving conic complementarity problems and semi-infinite programming problems, and their applications to transportation planning problems
开发解决二次曲线互补问题和半无限规划问题的算法及其在交通规划问题中的应用
  • 批准号:
    26330022
  • 财政年份:
    2014
  • 资助金额:
    $ 7.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Spectral problems in semi-classical analysis, wave and heat trace asymptotics and group actions on symplectic manifolds
半经典分析中的谱问题、波和热迹渐近以及辛流形上的群作用
  • 批准号:
    1005696
  • 财政年份:
    2010
  • 资助金额:
    $ 7.01万
  • 项目类别:
    Continuing Grant
Research on the problems of merging turning points via the semi-classical and microlocal analysis
基于半经典和微观局部分析的转折点融合问题研究
  • 批准号:
    22740094
  • 财政年份:
    2010
  • 资助金额:
    $ 7.01万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Automated Structure Generation, Error Correction, and Semi-Definite Programming Techniques for Structured Quadratic Inverse Eigenvale Problems: Theory, Algorithms and Applications
结构化二次反特征值问题的自动结构生成、纠错和半定编程技术:理论、算法和应用
  • 批准号:
    1014666
  • 财政年份:
    2010
  • 资助金额:
    $ 7.01万
  • 项目类别:
    Standard Grant
Insider problems in markets driven by semi
半导体驱动的市场内部问题
  • 批准号:
    22540145
  • 财政年份:
    2010
  • 资助金额:
    $ 7.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
AF: Small: Algorithmic and Quantitative Problems in Semi-algebraic and O-minimal Geometry
AF:小:半代数和 O 最小几何中的算法和定量问题
  • 批准号:
    0915954
  • 财政年份:
    2009
  • 资助金额:
    $ 7.01万
  • 项目类别:
    Standard Grant
A Computational Study of Nonconvex and Nonlinear Semi-infinite Optimisation Problems in Signal Processing
信号处理中非凸非线性半无限优化问题的计算研究
  • 批准号:
    DP0881040
  • 财政年份:
    2008
  • 资助金额:
    $ 7.01万
  • 项目类别:
    Discovery Projects
Algorithmic Problems in Semi-algebraic Geometry and Topology
半代数几何和拓扑中的算法问题
  • 批准号:
    0634907
  • 财政年份:
    2006
  • 资助金额:
    $ 7.01万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了