CAREER: Algorithmic Semi-Algebraic Geometry and Its Applications
职业:算法半代数几何及其应用
基本信息
- 批准号:0133597
- 负责人:
- 金额:$ 33.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-06-15 至 2007-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0133597Saugata BasuGeorgia TechCAREER: Algorithmic Semi-algebraic Geometry and its ApplicationsAlgorithmic semi-algebraic geometry lies at the heart of of many problems in several different areas of computer science and mathematics including discrete and computational geometry, robot motion planning, geometric modeling, computer-aided design, geometric theorem proving, mathematical investigations of real algebraic varieties, molecular chemistry, constraint databases etc. A closely related subject area is quantitative real algebraic geometry. Results from quantitative real algebraic geometry are the basic ingredients of better algorithms in semi-algebraic geometry and play an increasingly important role in several other areas of computer science: for instance, in bounding the geometric complexity of arrangements in computational geometry, computational learning theory, proving lower bounds in computational complexity theory, convex optimization problems etc.The first goal of this project is to design optimal algorithms for several important problems of semi-algebraic geometry including the problems of computing the homology groups and stratifications of semi-algebraic sets.Secondly, the methods and techniques of algorithmic real algebraic geometry will be applied to investigate several open problems in discrete and computational geometry and to explore new connections, especially in the area of computational topology. At the same time, several emerging applications of algorithmic semi-algebraic geometry will be investigated, especially in the area of constraint databases.Additionally, practical implementations will be undertaken, in order to build a system able to compute topological invariants (such as the number of connected components, the Euler characteristic, the Betti numbers, the full homology groups) of given semi-algebraic sets. This will aim at bridging the current gap between the theoretically best algorithms, and the best practical implementations available.The educational component of the project consists of developing an integrated cross-disciplinary curriculum suitable for advanced under-graduate and beginning graduate students in mathematics and computer science. This would require no pre-requisite beyond college-level calculus and linear algebra, so that that the students can quickly absorb the mathematical background necessary for this line of research, and at the same time be in a position to make efficient implementations, which would make themattractive to both industry and academia.
0133597 Saugata BasuGeorgia TechCAREER:数学半代数几何及其应用数学半代数几何是计算机科学和数学的几个不同领域中许多问题的核心,包括离散和计算几何,机器人运动规划,几何建模,计算机辅助设计,几何定理证明,真实的代数簇的数学研究,分子化学,约束数据库等。一个密切相关的主题领域是定量真实的代数几何。从定量真实的代数几何的结果是半代数几何中更好的算法的基本成分,并且在计算机科学的其他几个领域中发挥着越来越重要的作用:例如,在计算几何学、计算学习理论中界定排列的几何复杂性,在计算复杂性理论中证明下界,凸优化问题等。本项目的第一个目标是设计半代数几何中几个重要问题的优化算法,包括计算半代数集的同调群和分层问题。其次,算法真实的代数几何的方法和技术将被应用于研究离散和计算几何中的几个开放问题,并探索新的连接,特别是在计算拓扑学领域。 同时,将研究算法半代数几何的几个新兴应用,特别是在约束数据库领域,并将进行实际实现,以建立一个能够计算给定半代数集的拓扑不变量(如连通分支数,Euler特征,Betti数,全同调群)的系统。这将旨在弥合理论上最好的算法之间的差距,最好的实际实现available.The教育部分的项目包括开发一个综合的跨学科课程,适用于先进的本科生和开始研究生在数学和计算机科学。 这将不需要任何先决条件超越大学水平的微积分和线性代数,使学生可以快速吸收必要的数学背景,这条线的研究,并在同一时间能够作出有效的实施,这将使他们有吸引力的工业界和学术界。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Saugata Basu其他文献
On Projections of Semi-Algebraic Sets Defined by Few Quadratic Inequalities
- DOI:
10.1007/s00454-007-9014-1 - 发表时间:
2007-09-15 - 期刊:
- 影响因子:0.600
- 作者:
Saugata Basu;Thierry Zell - 通讯作者:
Thierry Zell
Prevalence of Myxozoan Parasites of Riverine Fishes of Jalpaiguri District, West Bengal, India
印度西孟加拉邦贾尔派古里地区河流鱼类粘虫寄生虫的流行情况
- DOI:
10.1007/s40011-021-01253-y - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Prabir Banerjee;Saugata Basu;B. Modak - 通讯作者:
B. Modak
On the Number of Topological Types Occurring in a Parameterized Family of Arrangements
- DOI:
10.1007/s00454-008-9079-5 - 发表时间:
2008-05-17 - 期刊:
- 影响因子:0.600
- 作者:
Saugata Basu - 通讯作者:
Saugata Basu
An asymptotically tight bound on the number of semi-algebraically connected components of realizable sign conditions
- DOI:
10.1007/s00493-009-2357-x - 发表时间:
2009-09-01 - 期刊:
- 影响因子:1.000
- 作者:
Saugata Basu;Richard Pollack;Marie-Françoise Roy - 通讯作者:
Marie-Françoise Roy
Efficient algorithm for computing the Euler–Poincaré characteristic of a semi-algebraic set defined by few quadratic inequalities
- DOI:
10.1007/s00037-006-0214-5 - 发表时间:
2006-10-01 - 期刊:
- 影响因子:1.000
- 作者:
Saugata Basu - 通讯作者:
Saugata Basu
Saugata Basu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Saugata Basu', 18)}}的其他基金
Collaborative Research: AF: Small: On the Complexity of Semidefinite and Polynomial Optimization through the Lens of Real Algebraic Geometry
合作研究:AF:小:通过实代数几何的视角探讨半定和多项式优化的复杂性
- 批准号:
2128702 - 财政年份:2021
- 资助金额:
$ 33.3万 - 项目类别:
Standard Grant
AF: Small: Symmetry, Randomness and Computations in Real Algebraic Geometry
AF:小:实代数几何中的对称性、随机性和计算
- 批准号:
1910441 - 财政年份:2019
- 资助金额:
$ 33.3万 - 项目类别:
Standard Grant
AF: Small: Quantitative and Algorithmic Aspects of Semi-algebraic Sets and Partitions
AF:小:半代数集和分区的定量和算法方面
- 批准号:
1618981 - 财政年份:2016
- 资助金额:
$ 33.3万 - 项目类别:
Standard Grant
AF: Small: Algorithmic and Quantitative Semi-Algebraic Geometry and Applications
AF:小:算法和定量半代数几何及其应用
- 批准号:
1319080 - 财政年份:2013
- 资助金额:
$ 33.3万 - 项目类别:
Standard Grant
Algorithmic Problems in Semi-algebraic Geometry and Topology
半代数几何和拓扑中的算法问题
- 批准号:
1036361 - 财政年份:2010
- 资助金额:
$ 33.3万 - 项目类别:
Standard Grant
AF: Small: Algorithmic and Quantitative Problems in Semi-algebraic and O-minimal Geometry
AF:小:半代数和 O 最小几何中的算法和定量问题
- 批准号:
0915954 - 财政年份:2009
- 资助金额:
$ 33.3万 - 项目类别:
Standard Grant
Algorithmic Problems in Semi-algebraic Geometry and Topology
半代数几何和拓扑中的算法问题
- 批准号:
0634907 - 财政年份:2006
- 资助金额:
$ 33.3万 - 项目类别:
Standard Grant
Design and Implementation of Algorithms in Semi-Algebraic Geometry
半代数几何算法的设计与实现
- 批准号:
0049070 - 财政年份:2000
- 资助金额:
$ 33.3万 - 项目类别:
Standard Grant
Design and Implementation of Algorithms in Semi-Algebraic Geometry
半代数几何算法的设计与实现
- 批准号:
9901947 - 财政年份:1999
- 资助金额:
$ 33.3万 - 项目类别:
Standard Grant
相似海外基金
AF: Small: Problems in Algorithmic Game Theory for Online Markets
AF:小:在线市场的算法博弈论问题
- 批准号:
2332922 - 财政年份:2024
- 资助金额:
$ 33.3万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
- 批准号:
2329908 - 财政年份:2024
- 资助金额:
$ 33.3万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
- 批准号:
2342244 - 财政年份:2024
- 资助金额:
$ 33.3万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343599 - 财政年份:2024
- 资助金额:
$ 33.3万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343600 - 财政年份:2024
- 资助金额:
$ 33.3万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
- 批准号:
2420942 - 财政年份:2024
- 资助金额:
$ 33.3万 - 项目类别:
Standard Grant
Australian Experiences of Algorithmic Culture on TikTok
澳大利亚在 TikTok 上的算法文化体验
- 批准号:
DP240102939 - 财政年份:2024
- 资助金额:
$ 33.3万 - 项目类别:
Discovery Projects
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
- 批准号:
2329909 - 财政年份:2024
- 资助金额:
$ 33.3万 - 项目类别:
Standard Grant
Conference: ANTS XVI: Algorithmic Number Theory Symposium 2024
会议:ANTS XVI:算法数论研讨会 2024
- 批准号:
2401305 - 财政年份:2024
- 资助金额:
$ 33.3万 - 项目类别:
Standard Grant