Symbolic Software for the Study of Integrability of Nonlinear Partial Differential and Differential-Difference Equations

研究非线性偏微分和微分方程可积性的符号软件

基本信息

  • 批准号:
    9901929
  • 负责人:
  • 金额:
    $ 23.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-08-15 至 2004-07-31
  • 项目状态:
    已结题

项目摘要

The objective of this project is to further develop and implement powerful symbolic algorithmsfor the investigation of integrability, through the calculation of conservation laws,higher-order symmetries, and recursion operators of nonlinear partial differential equations (PDES) and differential-difference equations (DDEs).Based on the concept of scaling invariance, the implemented algorithms will allow one to compute explicitly conserved densities, Hamiltonians, generalized symmetries, and cosymmetries. On the operator side, the algorithms can be used to compute the recursion operator and its conjugate, and the symplectic and cosymplectic (Hamiltonian) operators. The envisioned product is a comprehensive symbolic package in Mathematica syntax that will complement and build on previous software to compute invariants and symmetries for PDEs and DDEs.In addition, the project further develops symbolic software to compute exact solutions of PDEs and DDEs. The solution methods are based on multi-linear homogenization techniques. Once implemented, the software will allow the user to compute closed form solutions, such as soliton solutions and homoclinic and heteroclinic orbits, for large classes of nonlinear PDES. The extension of the method to DDEs will be investigated.The software will be written in Mathematica syntax. The packages will be entirely symbolic and produce analytical output. The development of novel mathematical techniques, in addition to the refinement and generalization of existing methods and algorithms, is an essential part of the proposed work. A comparison with existing algorithms will also be carried out.The aim is to provide high-quality symbolic software to researchers working on various aspects of integrability in soliton theory, dynamical systems, and mathematical physics. Specifically, our solvers and integrability testers are useful for the analysis of nonlinear PDEs and DDEs that arise in networks, elastic media, chemical kinetics, material sciences, biosciences, fluid dynamics, plasma physics, and nonlinear optics.
本项目的目标是通过计算非线性偏微分方程(PDES)和微分差分方程(DDE)的守恒律、高阶对称性和递归算子,进一步开发和实现用于可积性研究的强大符号算法。基于标度不变性的概念,所实现的算法将允许计算显式守恒密度、哈密顿量、广义对称和余对称。 在算子方面,该算法可用于计算递归算子及其共轭,以及辛和共辛(Hamilton)算子。 该产品是Mathematica语法的综合符号包,将补充和构建以前的软件,以计算偏微分方程和微分方程的不变量和对称性。此外,该项目还进一步开发符号软件,以计算偏微分方程和微分方程的精确解。 求解方法是基于多线性均匀化技术。 一旦实现,该软件将允许用户计算封闭形式的解决方案,如孤子解决方案和同宿和异宿轨道,为大类的非线性PDES。 本文将研究该方法在动态微分方程中的推广,并将用Mathematica语法编写软件。 这些资料包将完全是象征性的,并产生分析性的产出。 新的数学技术的发展,除了现有的方法和算法的细化和推广,是所提出的工作的一个重要组成部分。 与现有算法的比较也将进行。其目的是提供高质量的符号软件的研究人员在孤子理论,动力系统和数学物理的可积性的各个方面的工作。 具体而言,我们的求解器和可积性测试器可用于分析网络、弹性介质、化学动力学、材料科学、生物科学、流体动力学、等离子体物理和非线性光学中出现的非线性偏微分方程和微分方程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Willy Hereman其他文献

Willy Hereman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Willy Hereman', 18)}}的其他基金

A High Order Adaptive Semi-Lagrangian WENO Method for the Vlasov Equation
求解Vlasov方程的高阶自适应半拉格朗日WENO方法
  • 批准号:
    0914852
  • 财政年份:
    2009
  • 资助金额:
    $ 23.36万
  • 项目类别:
    Standard Grant
Symbolic Software for Conservation Laws of Multi-Dimensional Continuous and Discrete Nonlinear Equations
多维连续和离散非线性方程守恒定律的符号软件
  • 批准号:
    0830783
  • 财政年份:
    2008
  • 资助金额:
    $ 23.36万
  • 项目类别:
    Standard Grant
Symbolic Software for the Investigation of Nonlinear Partial Differential Equations
用于研究非线性偏微分方程的符号软件
  • 批准号:
    9625421
  • 财政年份:
    1996
  • 资助金额:
    $ 23.36万
  • 项目类别:
    Standard Grant
Development of Symbolic Software for Nonlinear Partial Differential Equations
非线性偏微分方程符号软件的开发
  • 批准号:
    9300978
  • 财政年份:
    1993
  • 资助金额:
    $ 23.36万
  • 项目类别:
    Standard Grant

相似海外基金

Study of secure system software for attack prevention and data protection
攻击防范和数据保护的安全系统软件研究
  • 批准号:
    23K16882
  • 财政年份:
    2023
  • 资助金额:
    $ 23.36万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
A Unified Software Platform Employing Virtual Reality-Humanoid Robots and Multisensory Signals to Study Cognitive Processes
利用虚拟现实人形机器人和多感官信号研究认知过程的统一软件平台
  • 批准号:
    22K14215
  • 财政年份:
    2022
  • 资助金额:
    $ 23.36万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
A Study on Management Cost Reduction for IoT Systems using Wiki Software and Bots
使用 Wiki 软件和机器人降低物联网系统管理成本的研究
  • 批准号:
    21K11858
  • 财政年份:
    2021
  • 资助金额:
    $ 23.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
pleioR: A powerful and fast test and software for the study of pleiotropy in systems involving many traits with biobank-sized data
pleioR:一个强大而快速的测试和软件,用于研究涉及生物库大小数据的许多性状的系统中的多效性
  • 批准号:
    10187158
  • 财政年份:
    2021
  • 资助金额:
    $ 23.36万
  • 项目类别:
A feasibility study of a data security software product adopting Digital Security by Design (DSbD) technology
采用数字安全设计(DSbD)技术的数据安全软件产品的可行性研究
  • 批准号:
    103220
  • 财政年份:
    2021
  • 资助金额:
    $ 23.36万
  • 项目类别:
    Collaborative R&D
Participation and Practices in Open Artificial Intelligence: A study of the Sociotechnical Networks of Open-Source Software Sharing and Development
开放人工智能的参与与实践:开源软件共享与开发的社会技术网络研究
  • 批准号:
    2594358
  • 财政年份:
    2021
  • 资助金额:
    $ 23.36万
  • 项目类别:
    Studentship
pleioR: A powerful and fast test and software for the study of pleiotropy in systems involving many traits with biobank-sized data
pleioR:一个强大而快速的测试和软件,用于研究涉及生物库大小数据的许多性状的系统中的多效性
  • 批准号:
    10424541
  • 财政年份:
    2021
  • 资助金额:
    $ 23.36万
  • 项目类别:
Feasibility study of lung nodule screening using pulmonary MRI and development of computer-assisted detection software
肺部MRI筛查肺结节的可行性研究及计算机辅助检测软件的开发
  • 批准号:
    20K08045
  • 财政年份:
    2020
  • 资助金额:
    $ 23.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Artists, Conservators and Game Developers: A comparative study of software preservation in three domains
艺术家、保护者和游戏开发者:三个领域软件保护的比较研究
  • 批准号:
    2327619
  • 财政年份:
    2019
  • 资助金额:
    $ 23.36万
  • 项目类别:
    Studentship
A study of analysis methods for a hazard that is resulted from interactions between software components by coordinating with multiple safety analysis method
协同多种安全分析方法研究软件组件之间相互作用产生的危害分析方法
  • 批准号:
    19K04920
  • 财政年份:
    2019
  • 资助金额:
    $ 23.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了