pleioR: A powerful and fast test and software for the study of pleiotropy in systems involving many traits with biobank-sized data
pleioR:一个强大而快速的测试和软件,用于研究涉及生物库大小数据的许多性状的系统中的多效性
基本信息
- 批准号:10424541
- 负责人:
- 金额:$ 7.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-15 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptedAdoptionAffectAll of Us Research ProgramBig DataBiologicalChromosome MappingCodeCommunitiesComplexComputer softwareDataData AnalysesData SetData StoreDevelopmentDiseaseDocumentationEnvironmentEtiologyGenesGeneticGenetic Predisposition to DiseaseGenetic studyGenomic SegmentGenotypeGenotype-Tissue Expression ProjectGrantHealthHumanHuman GenomeIndividualKnowledgeLinkMapsMemoryMetabolic syndromeMethodologyMethodsModernizationPerformancePhenotypePrivatizationPropertyQuantitative Trait LociResearchRiskSample SizeSamplingStatistical StudySyndromeSystemTestingVariantadvanced diseasebiobankgenetic analysisgenome wide association studygenomic locusimprovednovelopen sourcepleiotropismpreservationrisk predictionrisk variantsimulationsoftware developmenttooltraituser-friendly
项目摘要
Pleiotropy (i.e., variants that confer risk to multiple characters) leads to the genetic correlation between traits and
underlies the development of many syndromes. The identification of variants with pleiotropic effects on health-
related traits can improve the biological understanding of gene action and disease etiology, and can help to advance
disease-risk prediction.
However, mapping pleiotropic risk loci is statistically and computationally challenging. Schaid et al. (Genetics, 2016)
proposed an intersection-union sequential test that addresses the statistical challenges emerging in multi-trait
genome-wide association analyses. Schaid’s sequential Likelihood Ratio Test (sLRT) is powerful, provides adequate
error control, and leads to easy-to-interpret results. However, the adoption of the methodology remains limited
because the proposed test and the existing software do not scale to big data (hundreds of thousands of individuals,
millions of SNPs, many traits). Therefore, we propose to develop an alternative to the sLRT that achieves the same
power but involves computations that scale to big data.
Our approach adopts the intersection-union sequential testing framework but uses a Wald test and an approximation
that substantially reduces the computational burden. Preliminary results presented in this grant show that the
proposed test, and the beta C++ implementation we developed, has the power and error-control performance of the
sLRT, it is considerably faster (by a factor of about 300), and scales to big data.
In this project, we will (Aim 1) conduct extensive simulations to assess the statistical properties of the proposed test.
(Aim 2) We will integrate memory mapping with optimized in-memory computations to develop open-source
software that will implement the proposed test within the R environment, in a software package that will scale to
big-data analysis. (Aim 3) Finally, we will use the methods and software developed in Aim 3, together with data from
the UK-Biobank, to study the genetic underpinnings of Metabolic Syndrome.
The advent of biobank data has opened unprecedented opportunities for mapping genetic loci affecting complex
biological networks. However, more efficient data analysis tools are needed to unleash the potential of modern
biobanks. This proposal will: (i) Develop novel methods for mapping risk loci affecting systems of traits. (ii) Develop
and share with the research community software that can be used to analyze multidimensional phenotypes with big
data. (iii) Advance knowledge of the genetic basis of Metabolic Syndrome.
多效性(即赋予多个性状风险的变异)导致性状和基因之间的遗传相关性
是许多证候发展的基础。对健康具有多效性影响的变异体的鉴定
相关性状可以提高对基因作用和疾病病因的生物学理解,并有助于推动
疾病风险预测。
然而,绘制多效性风险基因座在统计和计算上都是具有挑战性的。Schaid等人。(《遗传学》,2016)
提出了一种交并序贯检验方法,解决了多性状的统计难题
全基因组关联分析。Schaid的序贯似然比检验(SLRT)是强大的,提供了足够的
错误控制,并导致易于解释的结果。然而,该方法的采用仍然有限。
因为建议的测试和现有软件不能扩展到大数据(数十万人,
数以百万计的SNPs,许多特征)。因此,我们建议开发一种替代轻便铁路的方案,以达到同样的效果。
强大,但涉及可扩展到大数据的计算。
我们的方法采用了交集-并序测试框架,但使用了Wald测试和近似
这大大减少了计算负担。这项拨款的初步结果显示,
建议的测试,以及我们开发的测试版C++实现,具有
SLRT的速度要快得多(提高了约300倍),并且可以扩展到大数据。
在这个项目中,我们将(目标1)进行广泛的模拟来评估拟议测试的统计特性。
(目标2)我们将把内存映射与优化的内存计算相结合,以开发开源
将在R环境中实施建议测试的软件,在可扩展到
大数据分析。(目标3)最后,我们将使用目标3中开发的方法和软件,以及来自
英国生物库,研究代谢综合征的遗传基础。
生物库数据的出现为绘制影响复合体的遗传基因座提供了前所未有的机会
生物网络。然而,需要更高效的数据分析工具来释放现代数据的潜力
生物库。这一建议将:(I)开发新的方法来定位影响性状系统的风险基因座。(Ii)发展
并与研究社区分享可用于分析大样本多维表型的软件
数据。(Iii)对代谢综合征的遗传基础有深入的了解。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fine mapping and accurate prediction of complex traits using Bayesian Variable Selection models applied to biobank-size data.
使用贝叶斯变量选择模型应用于生物银行大小数据的精细映射和准确预测复杂性状。
- DOI:10.1038/s41431-022-01135-5
- 发表时间:2023-03
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gustavo de los Campos其他文献
Gustavo de los Campos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gustavo de los Campos', 18)}}的其他基金
pleioR: A powerful and fast test and software for the study of pleiotropy in systems involving many traits with biobank-sized data
pleioR:一个强大而快速的测试和软件,用于研究涉及生物库大小数据的许多性状的系统中的多效性
- 批准号:
10187158 - 财政年份:2021
- 资助金额:
$ 7.83万 - 项目类别:
Statistical Tools for Whole-Genome Prediction of Complex Traits and Diseases
用于复杂性状和疾病的全基因组预测的统计工具
- 批准号:
8433350 - 财政年份:2012
- 资助金额:
$ 7.83万 - 项目类别:
Statistical Tools for Whole-Genome Analysis & Prediction of Complex Traits and Diseases
全基因组分析统计工具
- 批准号:
8964392 - 财政年份:2012
- 资助金额:
$ 7.83万 - 项目类别:
Factors Affecting Prediction Accuracy of Complex Human Traits and Diseases
影响复杂人类特征和疾病预测准确性的因素
- 批准号:
9060460 - 财政年份:2012
- 资助金额:
$ 7.83万 - 项目类别:
Factors Affecting Prediction Accuracy of Complex Human Traits and Diseases
影响复杂人类特征和疾病预测准确性的因素
- 批准号:
8536872 - 财政年份:2012
- 资助金额:
$ 7.83万 - 项目类别:
Statistical Tools for Whole-Genome Prediction of Complex Traits and Diseases
用于复杂性状和疾病的全基因组预测的统计工具
- 批准号:
8607197 - 财政年份:2012
- 资助金额:
$ 7.83万 - 项目类别:
Factors Affecting Prediction Accuracy of Complex Human Traits and Diseases
影响复杂人类特征和疾病预测准确性的因素
- 批准号:
8710270 - 财政年份:2012
- 资助金额:
$ 7.83万 - 项目类别:
Statistical Tools for Whole-Genome Prediction of Complex Traits and Diseases
用于复杂性状和疾病的全基因组预测的统计工具
- 批准号:
8274041 - 财政年份:2012
- 资助金额:
$ 7.83万 - 项目类别:
Factors Affecting Prediction Accuracy of Complex Human Traits and Diseases
影响复杂人类特征和疾病预测准确性的因素
- 批准号:
8369791 - 财政年份:2012
- 资助金额:
$ 7.83万 - 项目类别:
Statistical Tools for Whole-Genome Analysis & Prediction of Complex Traits and Diseases
全基因组分析统计工具
- 批准号:
9293346 - 财政年份:2012
- 资助金额:
$ 7.83万 - 项目类别:
相似海外基金
How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
- 批准号:
2315783 - 财政年份:2023
- 资助金额:
$ 7.83万 - 项目类别:
Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
- 批准号:
2719534 - 财政年份:2022
- 资助金额:
$ 7.83万 - 项目类别:
Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
- 批准号:
20K01113 - 财政年份:2020
- 资助金额:
$ 7.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633211 - 财政年份:2020
- 资助金额:
$ 7.83万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2436895 - 财政年份:2020
- 资助金额:
$ 7.83万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633207 - 财政年份:2020
- 资助金额:
$ 7.83万 - 项目类别:
Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
- 批准号:
19K01745 - 财政年份:2019
- 资助金额:
$ 7.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
- 批准号:
426559561 - 财政年份:2019
- 资助金额:
$ 7.83万 - 项目类别:
Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
- 批准号:
2236701 - 财政年份:2019
- 资助金额:
$ 7.83万 - 项目类别:
Studentship
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
- 批准号:
415543446 - 财政年份:2019
- 资助金额:
$ 7.83万 - 项目类别:
Research Fellowships