A High Order Adaptive Semi-Lagrangian WENO Method for the Vlasov Equation
求解Vlasov方程的高阶自适应半拉格朗日WENO方法
基本信息
- 批准号:0914852
- 负责人:
- 金额:$ 25.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-15 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).The investigator and her colleagues consider a novel high order adaptive semi-Lagrangian approach for kinetic plasma simulations. The major challenge of kinetic simulations is the huge computational cost, from the high dimensionality (3-D in physical space and 3-D in phasespace) and from the spatial and temporal multi-scale features of the problem. To address these challenges, the proposed methodology consists of three advanced numerical techniques: 1) a conservative semi-Lagrangian method with high order weighted essentially non-oscillatory (WENO) reconstructions; 2) a high order Strang split spectral deferred correction method to bridge time scales of different species and integrate in time with high order accuracy; 3) mesh adaptivity by incorporating the Strang split Semi-Lagrangian WENO method into the framework of adaptive mesh refinement. As a result of high order accuracy and adaptivity in both space and time, the investigator and her collaborators hope to apply the algorithm in realistic plasma applications with affordable computational cost by using relatively coarse and dynamically adaptive mesh. The eventual goal is to enable large-scale parallel simulations in order to predict/confirm/explain the physical phenomenon observed in a broad range of applications.The investigator and her collaborators aim at developing robust and highly efficient numerical algorithms. The well-developed algorithm will have a direct impact in plasma applications, such as developing fusion energy, the modeling of magnetosphere, among many others. Besides, there is large room for further extensions and applications. The algorithm can be extended to solve the more general Boltzmann equation. It can served as a microscopic solver in a mix kinetic-hydrodynamic model via the heterogeneous multi-scale method. While designed for the plasma simulations, the proposed algorithm can be further extended to astrophysics applications, semi-conductor device simulations among many others. The broader impact comes from the multi-disciplinary nature of the proposed research. The proposed research will initiate and serve as a solid foundation for collaborative research work with applied mathematicians, plasma physicists and astrophysicists. The collaborative work will not only expedite the development of the research in both sides of collaborations, but also help training graduate students with a diverse background and multidisciplinary skills.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。研究员和她的同事考虑了一种新的高阶自适应半拉格朗日方法,用于动力学等离子体模拟。动力学模拟的主要挑战是巨大的计算成本,从高维(3-D在物理空间和3-D在相空间)和从空间和时间的多尺度特征的问题。为了解决这些问题,本文提出了三种先进的数值方法:1)高阶加权基本无振荡(韦诺)重建的保守半拉格朗日方法; 2)高阶斯特朗分裂谱延迟校正方法,用于桥接不同物种的时间尺度,并在时间上进行高阶精度的积分; 3)网格自适应性,将斯特朗分裂半拉格朗日韦诺方法引入自适应网格加密框架。由于高阶精度和空间和时间的自适应性,研究者和她的合作者希望通过使用相对粗糙和动态自适应的网格,以可承受的计算成本将该算法应用于实际的等离子体应用中。最终目标是实现大规模并行模拟,以预测/确认/解释在广泛应用中观察到的物理现象。研究者和她的合作者旨在开发强大且高效的数值算法。发展良好的算法将对等离子体应用产生直接影响,例如开发聚变能,磁层建模等。 此外,还有很大的扩展和应用空间。 该算法可以推广到求解更一般的玻尔兹曼方程。它可以作为一个微观求解器的混合动力学-水动力学模型通过非均匀多尺度方法。 虽然设计的等离子体模拟,所提出的算法可以进一步扩展到天体物理学的应用,半导体器件模拟等。更广泛的影响来自拟议研究的多学科性质。拟议的研究将启动并作为与应用数学家,等离子体物理学家和天体物理学家合作研究工作的坚实基础。合作工作不仅将加快合作双方研究的发展,而且有助于培养具有多样化背景和多学科技能的研究生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Willy Hereman其他文献
Willy Hereman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Willy Hereman', 18)}}的其他基金
Symbolic Software for Conservation Laws of Multi-Dimensional Continuous and Discrete Nonlinear Equations
多维连续和离散非线性方程守恒定律的符号软件
- 批准号:
0830783 - 财政年份:2008
- 资助金额:
$ 25.4万 - 项目类别:
Standard Grant
Symbolic Software for the Study of Integrability of Nonlinear Partial Differential and Differential-Difference Equations
研究非线性偏微分和微分方程可积性的符号软件
- 批准号:
9901929 - 财政年份:1999
- 资助金额:
$ 25.4万 - 项目类别:
Standard Grant
Symbolic Software for the Investigation of Nonlinear Partial Differential Equations
用于研究非线性偏微分方程的符号软件
- 批准号:
9625421 - 财政年份:1996
- 资助金额:
$ 25.4万 - 项目类别:
Standard Grant
Development of Symbolic Software for Nonlinear Partial Differential Equations
非线性偏微分方程符号软件的开发
- 批准号:
9300978 - 财政年份:1993
- 资助金额:
$ 25.4万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Learning and Leveraging Conventions in the Design of an Adaptive Haptic Shared Control for Steering a Semi-Automated Vehicle
职业:学习和利用设计用于驾驶半自动车辆的自适应触觉共享控制的惯例
- 批准号:
2238268 - 财政年份:2023
- 资助金额:
$ 25.4万 - 项目类别:
Standard Grant
An interactive deep-learning method to semi-automatically segment abdominal organs to support stereotactic MR guided online adaptive radiotherapy (SMART) for abdominal cancers
一种半自动分割腹部器官的交互式深度学习方法,以支持针对腹部癌症的立体定向 MR 引导在线自适应放疗 (SMART)
- 批准号:
10593506 - 财政年份:2019
- 资助金额:
$ 25.4万 - 项目类别:
An interactive deep-learning method to semi-automatically segment abdominal organs to support stereotactic MR guided online adaptive radiotherapy (SMART) for abdominal cancers
一种半自动分割腹部器官的交互式深度学习方法,以支持针对腹部癌症的立体定向 MR 引导在线自适应放疗 (SMART)
- 批准号:
10017990 - 财政年份:2019
- 资助金额:
$ 25.4万 - 项目类别:
An interactive deep-learning method to semi-automatically segment abdominal organs to support stereotactic MR guided online adaptive radiotherapy (SMART) for abdominal cancers
一种半自动分割腹部器官的交互式深度学习方法,以支持针对腹部癌症的立体定向 MR 引导在线自适应放疗 (SMART)
- 批准号:
9807610 - 财政年份:2019
- 资助金额:
$ 25.4万 - 项目类别:
Development of chatter suppression method using adaptive semi active tuned mass damper
自适应半主动调谐质量阻尼器颤振抑制方法的开发
- 批准号:
18K04008 - 财政年份:2018
- 资助金额:
$ 25.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
I-Corps: Semi-automated adaptive upper extremity training for individuals post-stroke
I-Corps:针对中风后个人的半自动适应性上肢训练
- 批准号:
1637025 - 财政年份:2016
- 资助金额:
$ 25.4万 - 项目类别:
Standard Grant
BRIGE: Adaptive Vibrational Energy Harvesting Systems through Semi-Passive Control of Nonlinear Oscillators
BRIGE:通过非线性振荡器半被动控制的自适应振动能量收集系统
- 批准号:
1342070 - 财政年份:2013
- 资助金额:
$ 25.4万 - 项目类别:
Standard Grant
Detection and adaptive prioritization of semi-static data streams and traffic patterns in Network-on-Chips
片上网络中半静态数据流和流量模式的检测和自适应优先级排序
- 批准号:
232927154 - 财政年份:2013
- 资助金额:
$ 25.4万 - 项目类别:
Research Grants
Adaptive management of arid and semi-arid ecosystems
干旱和半干旱生态系统的适应性管理
- 批准号:
LP120100490 - 财政年份:2012
- 资助金额:
$ 25.4万 - 项目类别:
Linkage Projects
Adaptive Content-based Image Retrieval using Semi-Supervised Learning Method
使用半监督学习方法的自适应基于内容的图像检索
- 批准号:
22500152 - 财政年份:2010
- 资助金额:
$ 25.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)