Adaptable and Scalable Techniques for Branching Algorithms
分支算法的适应性和可扩展技术
基本信息
- 批准号:9902092
- 负责人:
- 金额:$ 24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-08-01 至 2004-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project intends to advance the state of the art in applying parallel computing to branching algorithms. The term "branching algorithm" refers to any method built on the basic principle of branch-and-bound search for numerical optimization, including branch-and-bound, branch-and-cut, and branch-and-price methods.The software platform for the work will be PICO, a C++ class library package already being developed in cooperation with Sandia National Laboratories. The main goals for the continued development of PICO are:SCALABILITY: the software should scale efficiently up to hundreds or thousands of processors. While systems this large are rare today, and some of the "hype" surrounding them has quieted, a robust trend towards greater parallelism continues in the computer hardware industry. The project intends to develop technology that will continue to be useful as systems with more highly parallel CPU's become available.SYSTEMS PORTABILITY: the package should be adaptable, by changing its run-time parameter configuration, to varying communication/computation speed ratios. It should be usable on hardware from any vendor offering standard parallel software tools (C++ and MPI).APPLICATIONS PORTABILITY: the basic parallel search engine will be applicable to a wide variety of branching algorithms without duplication of the fundamental programming effort. The same core code should be able to manage parallel search applied to any branching algorithm, including relatively advanced methods like branch and cut. OBJECT ORIENTATION: extensible, object-oriented software design should help achieve the portability goals.
这个项目旨在推进在分支算法中应用并行计算的最新技术。分支算法是指任何基于分支定界搜索基本原理的数值优化方法,包括分支定界法、分支切割法和分支价格法。这项工作的软件平台将是皮科,一个已经与桑迪亚国家实验室合作开发的C++类库包。皮科持续开发的主要目标是:可扩展性:软件应有效扩展到数百或数千个处理器。虽然如此大的系统在今天已经很少见了,而且围绕它们的一些“炒作”已经平息,但在计算机硬件行业中,更大的并行性仍在继续。该项目打算开发的技术,将继续是有用的系统与更多的高度并行CPU的变得available.SYSTEMS便携性:该软件包应适应,通过改变其运行时的参数配置,以不同的通信/计算速度比。它应该是可用的硬件从任何供应商提供标准的并行软件工具(C++和MPI)。应用程序的便携性:基本的并行搜索引擎将适用于各种分支算法,而无需重复的基本编程工作。相同的核心代码应该能够管理应用于任何分支算法的并行搜索,包括相对高级的方法,如分支和切割。目标导向:可扩展的、面向对象的软件设计应该有助于实现可移植性目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Eckstein其他文献
Parallel Branch-and-Bound Algorithms for General Mixed Integer Programming on the CM-5
- DOI:
10.1137/0804046 - 发表时间:
1994-11 - 期刊:
- 影响因子:0
- 作者:
Jonathan Eckstein - 通讯作者:
Jonathan Eckstein
Approximate iterations in Bregman-function-based proximal algorithms
- DOI:
10.1007/bf02680553 - 发表时间:
1998-09 - 期刊:
- 影响因子:2.7
- 作者:
Jonathan Eckstein - 通讯作者:
Jonathan Eckstein
Arrival rate approximation by nonnegative cubic splines
通过非负三次样条逼近到达率
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
F. Alizadeh;Jonathan Eckstein;Nilay Noyan;Gábor Rudolf - 通讯作者:
Gábor Rudolf
REPR: Rule-Enhanced Penalized Regression
REPR:规则增强惩罚回归
- DOI:
10.1287/ijoo.2019.0015 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Jonathan Eckstein;Ai Kagawa;Noam Goldberg - 通讯作者:
Noam Goldberg
Projective splitting with forward steps
具有前向步骤的投影分裂
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:2.7
- 作者:
Patrick R. Johnstone;Jonathan Eckstein - 通讯作者:
Jonathan Eckstein
Jonathan Eckstein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Eckstein', 18)}}的其他基金
AF: Small: Incremental and Asynchronous Projective Splitting Methods for Mathematical Programming
AF:小:数学规划的增量和异步投影分裂方法
- 批准号:
1617617 - 财政年份:2016
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
AF: Small: Approximate Augmented Lagrangians: First-Order and Parallel Optimization Methods, with Applications to Stochastic Programming
AF:小:近似增广拉格朗日:一阶和并行优化方法,及其在随机规划中的应用
- 批准号:
1115638 - 财政年份:2011
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
CNS Core: Small: Core Scheduling Techniques and Programming Abstractions for Scalable Serverless Edge Computing Engine
CNS Core:小型:可扩展无服务器边缘计算引擎的核心调度技术和编程抽象
- 批准号:
2322919 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Development of advanced scalable 3D spatial techniques for multi-spectral LiDAR point cloud modeling of boreal forest inventory attributes, above-ground carbon, and wildfire fuel.
开发先进的可扩展 3D 空间技术,用于北方森林库存属性、地上碳和野火燃料的多光谱 LiDAR 点云建模。
- 批准号:
570298-2022 - 财政年份:2022
- 资助金额:
$ 24万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Advanced error control coding techniques for scalable blockchains
可扩展区块链的高级错误控制编码技术
- 批准号:
DP200100731 - 财政年份:2020
- 资助金额:
$ 24万 - 项目类别:
Discovery Projects
Novel Decomposition Techniques Enabling Scalable Computational Frameworks for Large-Scale Nonlinear Optimization Problems
新颖的分解技术为大规模非线性优化问题提供可扩展的计算框架
- 批准号:
2012410 - 财政年份:2020
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
CAREER: Modern nonconvex optimization for machine learning: foundations of geometric and scalable techniques
职业:机器学习的现代非凸优化:几何和可扩展技术的基础
- 批准号:
1846088 - 财政年份:2019
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Distributed and Scalable Privacy-Preserving Data Mining Techniques for Big Data
分布式、可扩展的大数据隐私保护数据挖掘技术
- 批准号:
RGPIN-2014-04520 - 财政年份:2019
- 资助金额:
$ 24万 - 项目类别:
Discovery Grants Program - Individual
Distributed and Scalable Privacy-Preserving Data Mining Techniques for Big Data
分布式、可扩展的大数据隐私保护数据挖掘技术
- 批准号:
RGPIN-2014-04520 - 财政年份:2018
- 资助金额:
$ 24万 - 项目类别:
Discovery Grants Program - Individual
Distributed and Scalable Privacy-Preserving Data Mining Techniques for Big Data
分布式、可扩展的大数据隐私保护数据挖掘技术
- 批准号:
RGPIN-2014-04520 - 财政年份:2017
- 资助金额:
$ 24万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Scalable Techniques for Visualizing Very Large Graphs
职业:可视化超大图形的可扩展技术
- 批准号:
1652846 - 财政年份:2017
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Distributed and Scalable Privacy-Preserving Data Mining Techniques for Big Data
分布式、可扩展的大数据隐私保护数据挖掘技术
- 批准号:
RGPIN-2014-04520 - 财政年份:2017
- 资助金额:
$ 24万 - 项目类别:
Discovery Grants Program - Individual