CAREER: Modern nonconvex optimization for machine learning: foundations of geometric and scalable techniques

职业:机器学习的现代非凸优化:几何和可扩展技术的基础

基本信息

  • 批准号:
    1846088
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-03-15 至 2024-02-29
  • 项目状态:
    已结题

项目摘要

Mathematical optimization lies at the heart of machine learning (ML) and artificial intelligence (AI) algorithms. Key challenges herein are to decide what criteria to optimize, and what algorithms to use for performing the optimization. These challenges underlie the motivation for the present project. More specifically, this project seeks to make progress on three fundamental topics in optimization for ML: (i) theoretical foundations for a rich new class of optimization problems that can be solved efficiently (i.e., in a computationally tractable manner); (ii) a set of algorithms that apply to large-scale optimization problems in machine learning (e.g., for accelerating the training of neural networks); and (iii) theory that seeks to understand and explain why do neural networks succeed in practice. By focusing on topics of foundational importance, this project should spur a variety of followup research that deepends the connection of ML and AI with both mathematics and the applied sciences. More broadly, the this project may have a lasting societal impact too, primarily because of (i) its focus on optimization particularly relevant to ML and AI; (2) the non-traditional application domains it connects with (e.g., synthetic biology); and (3) because the investigator is in an environment that fosters such impact (namely, the Institute for Data, Systems, and Society (IDSS), a cross-disciplinary institute at MIT whose mission to drive solutions to problems of societal relevance). Finally, the project has an education centric focus; it involves intellectual and professional development of students, as well as development of curricular material based on the topics of research covered herein.This project lays out an ambitious agenda to develop foundational theory for geometric optimization, large-scale nonconvex optimization, and deep neural networks. The research on geometric optimization (which is a powerful new subclass of nonconvex optimization), is originally motivated by applications in ML and statistics; however, it stands to have a broader impact across all disciplines that consume optimization. The investigator seeks to develop a theory of polynomial time optimization for a class strictly larger than usual convex optimization problems, and thereby endow practitioners with new polynomial time tools and models; if successful, this investigation could open an entire subarea of research and applications. Beyond geometric optimization, the project also focuses on large-scale nonconvex optimization and on the theory of optimization and generalization for deep learning. Within these topics, the project will address key theoretical challenges, develop scalable new algorithms that could greatly speed up neural network training, and also make progress that reduces the gap between the theory and real-world practice of nonconvex optimization.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数学优化是机器学习(ML)和人工智能(AI)算法的核心。这里的关键挑战是决定优化什么标准,以及使用什么算法来执行优化。这些挑战是本项目的动机所在。更具体地说,该项目旨在在ML优化的三个基本主题上取得进展:(i)可以有效解决的丰富的新一类优化问题的理论基础(即,以计算上易处理的方式);(ii)应用于机器学习中的大规模优化问题的一组算法(例如,用于加速神经网络的训练);以及(iii)试图理解和解释神经网络在实践中成功的原因的理论。通过关注具有基础重要性的主题,该项目应该会促进各种后续研究,加深ML和AI与数学和应用科学的联系。更广泛地说,该项目也可能产生持久的社会影响,主要是因为(i)它专注于与ML和AI特别相关的优化;(2)它所连接的非传统应用领域(例如,合成生物学);以及(3)因为研究者所处的环境会促进这种影响(即数据、系统和社会研究所(IDSS),麻省理工学院的一个跨学科研究所,其使命是推动解决社会相关问题)。最后,该项目以教育为中心,涉及学生的智力和专业发展,以及基于本文所涵盖的研究主题开发课程材料。该项目制定了一个雄心勃勃的议程,以发展几何优化,大规模非凸优化和深度神经网络的基础理论。几何优化(这是非凸优化的一个强大的新子类)的研究最初是由ML和统计学中的应用所推动的;然而,它将对所有使用优化的学科产生更广泛的影响。研究人员试图为一类严格大于通常的凸优化问题开发多项式时间优化理论,从而为从业者提供新的多项式时间工具和模型;如果成功,这项调查可能会打开整个研究和应用领域。除了几何优化,该项目还专注于大规模非凸优化以及深度学习的优化和泛化理论。在这些主题中,该项目将解决关键的理论挑战,开发可扩展的新算法,可以大大加快神经网络的训练,并取得进展,减少非凸优化的理论和现实世界的实践之间的差距。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Time Varying Regression with Hidden Linear Dynamics
  • DOI:
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Horia Mania;A. Jadbabaie;Devavrat Shah;S. Sra
  • 通讯作者:
    Horia Mania;A. Jadbabaie;Devavrat Shah;S. Sra
Geodesically-convex optimization for averaging partially observed covariance matrices
  • DOI:
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    F. Yger;S. Chevallier;Quentin Barthélemy;S. Sra
  • 通讯作者:
    F. Yger;S. Chevallier;Quentin Barthélemy;S. Sra
Open Problem: Can Single-Shuffle SGD be Better than Reshuffling SGD and GD?
开放问题:单次洗牌 SGD 能否比重新洗牌 SGD 和 GD 更好?
Beyond Worst-Case Analysis in Stochastic Approximation: Moment Estimation Improves Instance Complexity
  • DOI:
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Zhang;Hongzhou Lin;Subhro Das;S. Sra;A. Jadbabaie
  • 通讯作者:
    J. Zhang;Hongzhou Lin;Subhro Das;S. Sra;A. Jadbabaie
Three Operator Splitting with a Nonconvex Loss Function
  • DOI:
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Yurtsever;Varun Mangalick;S. Sra
  • 通讯作者:
    A. Yurtsever;Varun Mangalick;S. Sra
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Suvrit Sra其他文献

Suvrit Sra的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Suvrit Sra', 18)}}的其他基金

TRIPODS+X:RES:Collaborative Research: Learning with Expert-In-The-Loop for Multimodal Weakly Labeled Data and an Application to Massive Scale Medical Imaging
TRIPODS X:RES:协作研究:与专家在环学习多模态弱标记数据及其在大规模医学成像中的应用
  • 批准号:
    1839258
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
BIGDATA: F: Towards Automating Data Analysis: Interpretable, Interactive, and Scalable Learning via Discrete Probability
BIGDATA:F:迈向自动化数据分析:通过离散概率进行可解释、交互式和可扩展的学习
  • 批准号:
    1741341
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似海外基金

Interactions of Human and Machine Intelligence in Modern Economic Systems
现代经济系统中人与机器智能的相互作用
  • 批准号:
    DP240100506
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Projects
Connecting Histories, Connecting Heritage: Early Modern Cities and Their Afterlives
连接历史、连接遗产:早期现代城市及其来世
  • 批准号:
    MR/X036200/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Fellowship
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Understanding and Ensuring Secure-by-design Microarchitecture in Modern Era of Computing
职业:理解并确保现代计算时代的安全设计微架构
  • 批准号:
    2340777
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CREST HBCU-RISE: Advancing Theoretical Artificial Intelligence Infrastructure for Modern Data Science Challenges
CREST HBCU-RISE:推进理论人工智能基础设施应对现代数据科学挑战
  • 批准号:
    2409093
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
  • 批准号:
    2322973
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
  • 批准号:
    2322974
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Policy and Evidence Centre for Modern Slavery and Human Rights
现代奴隶制与人权政策与证据中心
  • 批准号:
    AH/T012412/2
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Modern statistical methods for clustering community ecology data
群落生态数据聚类的现代统计方法
  • 批准号:
    DP240100143
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Projects
'Bartmann goes global' - the cultural impact of an iconic object in the early modern period
“巴特曼走向全球”——现代早期标志性物品的文化影响
  • 批准号:
    AH/Y007611/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了