Using Speech Recognition to Enhance Communication Capabilities for Individuals with Disabilities
使用语音识别增强残疾人的沟通能力
基本信息
- 批准号:9910607
- 负责人:
- 金额:$ 45.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-09-01 至 2003-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this research is to understand and improve how individuals utilize continuous word speech recognition (CSR) systems, with a special emphasis on the use of such systems by people with physical disabilities (such as C1-C8 spinal cord injuries, severe repetitive stress injuries, upper extremity amputations, and muscular dystrophy) to enter non-trivial quantities of spontaneous speech. While speech recognition algorithms and accuracy rates continue to improve, identifying and correcting recognition errors remain significant problems plaguing CSR systems. The difficulties are compounded with spontaneous speech input, due to increased recognition errors, or when the users have physical disabilities, due to increased difficulty in identifying and correcting errors. This research addresses these problems by modeling the relationship between user tasks, the difficulties users encounter identifying and correcting errors, feedback accuracy, methodologies used to correct recognition errors once they are identified, and the type and timing of feedback provided by the CSR system. Subsequently, new interaction processes will be defined which increase the effectiveness of CSR systems. The PIs believe increased collaboration between users and CSR systems during the error identification process is critical to increasing the effectiveness of these systems: CSR systems can provide confidence annotations which drive the feedback users receive to help them complete the error identification and error correction processes. This research will result in the development of models that provide unprecedented understanding of the relationship between users and CSR systems, thereby leading to enhanced speech based human machine communication for all users, including those with physical disabilities.
本研究的目的是了解和改善个人如何利用连续单词语音识别(CSR)系统,特别强调身体残疾的人(如C1-C8脊髓损伤,严重的重复性应力损伤,上肢截肢和肌肉萎缩症)使用这种系统来输入非平凡数量的自发语音。 虽然语音识别算法和准确率不断提高,识别和纠正识别错误仍然是困扰CSR系统的重要问题。 由于识别错误的增加,或者当用户有身体残疾时,由于识别和纠正错误的困难增加,这些困难与自发的语音输入相结合。 本研究解决了这些问题,通过建模用户任务之间的关系,用户遇到的困难,识别和纠正错误,反馈的准确性,用于纠正识别错误,一旦他们被确定的方法,以及CSR系统提供的反馈的类型和时间。 随后,将确定新的互动程序,以提高CSR系统的有效性。 PI认为,在错误识别过程中,用户和CSR系统之间的合作对于提高这些系统的有效性至关重要:CSR系统可以提供信心注释,推动用户收到反馈,帮助他们完成错误识别和纠错过程。 这项研究将导致模型的发展,提供前所未有的理解用户和CSR系统之间的关系,从而导致增强基于语音的人机通信的所有用户,包括那些有身体残疾的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Sears其他文献
Motion does matter: an examination of speech-based text entry on the move
- DOI:
10.1007/s10209-005-0006-8 - 发表时间:
2005-12-08 - 期刊:
- 影响因子:2.700
- 作者:
Kathleen J. Price;Min Lin;Jinjuan Feng;Rich Goldman;Andrew Sears;Julie A. Jacko - 通讯作者:
Julie A. Jacko
Framework for usability: healthcare professionals and the Internet
可用性框架:医疗保健专业人员和互联网
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:2.4
- 作者:
J. Jacko;Andrew Sears;S. J. Sorensen - 通讯作者:
S. J. Sorensen
Testing and Evaluation
- DOI:
10.4135/9781452232461.n7 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Andrew Sears - 通讯作者:
Andrew Sears
Third-party error detection support mechanisms for dictation speech recognition
- DOI:
10.1016/j.intcom.2010.02.002 - 发表时间:
2010-09-01 - 期刊:
- 影响因子:
- 作者:
Lina Zhou;Yongmei Shi;Andrew Sears - 通讯作者:
Andrew Sears
Andrew Sears的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Sears', 18)}}的其他基金
Accessible Electronic Health Records: Defining a Research Agenda
可访问的电子健康记录:定义研究议程
- 批准号:
1047616 - 财政年份:2010
- 资助金额:
$ 45.63万 - 项目类别:
Standard Grant
MRI: Acquisition of Equipment to Establish a Research Infrastructure to Support HCI and UA Research
MRI:采购设备以建立研究基础设施以支持 HCI 和 UA 研究
- 批准号:
0619379 - 财政年份:2007
- 资助金额:
$ 45.63万 - 项目类别:
Standard Grant
Human-Centered Computing: Defining A Research Agenda September 2006- NSF Arlington, VA
以人为本的计算:定义研究议程 2006 年 9 月 - NSF 阿灵顿,弗吉尼亚州
- 批准号:
0642332 - 财政年份:2006
- 资助金额:
$ 45.63万 - 项目类别:
Standard Grant
Consortium for research on accessible computing
无障碍计算研究联盟
- 批准号:
0531269 - 财政年份:2005
- 资助金额:
$ 45.63万 - 项目类别:
Standard Grant
SGER: IT-Oriented Functional Assessments
SGER:面向 IT 的功能评估
- 批准号:
0511954 - 财政年份:2005
- 资助金额:
$ 45.63万 - 项目类别:
Standard Grant
Using Speech Recognition to Enhance Communication Capabilities for Individuals with Physical Disabilities
使用语音识别增强身体残障人士的沟通能力
- 批准号:
0328391 - 财政年份:2003
- 资助金额:
$ 45.63万 - 项目类别:
Continuing Grant
ITR/PE: Universal access for situationally induced impairments: Modeling, prototyping, and evaluation
ITR/PE:情境引起的损伤的普遍获取:建模、原型设计和评估
- 批准号:
0121570 - 财政年份:2001
- 资助金额:
$ 45.63万 - 项目类别:
Continuing Grant
相似海外基金
Disrupter or enabler? Assessing the impact of using automatic speech recognition technology in interpreter-mediated legal proceedings
颠覆者还是推动者?
- 批准号:
2889440 - 财政年份:2023
- 资助金额:
$ 45.63万 - 项目类别:
Studentship
Establishment of intraoperative education model using speech recognition and language information processing technology
利用语音识别和语言信息处理技术建立术中教育模型
- 批准号:
23K16281 - 财政年份:2023
- 资助金额:
$ 45.63万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
SBIR Phase II: Automated Emotional Distress Severity Classification for Children and Adolescents Using Speech Emotion Recognition and AI
SBIR 第二阶段:使用语音情绪识别和人工智能对儿童和青少年进行自动情绪困扰严重程度分类
- 批准号:
2126811 - 财政年份:2021
- 资助金额:
$ 45.63万 - 项目类别:
Cooperative Agreement
Collaborative Research: Improving Techniques of Automatic Speech Recognition and Transfer Learning using Documentary Linguistic Corpora
合作研究:利用文献语言语料库改进自动语音识别和迁移学习技术
- 批准号:
2123624 - 财政年份:2021
- 资助金额:
$ 45.63万 - 项目类别:
Standard Grant
Collaborative Research: Improving Techniques of Automatic Speech Recognition and Transfer Learning using Documentary Linguistic Corpora
合作研究:利用文献语言语料库改进自动语音识别和迁移学习技术
- 批准号:
2123578 - 财政年份:2021
- 资助金额:
$ 45.63万 - 项目类别:
Standard Grant
Generating Audio Samples for Speech Recognition using Generative Adversarial Networks
使用生成对抗网络生成用于语音识别的音频样本
- 批准号:
551152-2020 - 财政年份:2020
- 资助金额:
$ 45.63万 - 项目类别:
University Undergraduate Student Research Awards
Utterance training method for maintaining throat function -Evaluation and training program using speech recognition and deep learning -
维护喉咙功能的言语训练方法 -利用语音识别和深度学习的评估和训练计划 -
- 批准号:
20K11894 - 财政年份:2020
- 资助金额:
$ 45.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of foreign language speaking materials using speech recognition system and VR chatbot
利用语音识别系统和VR聊天机器人开发外语口语材料
- 批准号:
19K00879 - 财政年份:2019
- 资助金额:
$ 45.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Emotion detection from speech using high-accuracy emotional speech recognition
使用高精度情绪语音识别进行语音情绪检测
- 批准号:
19K12014 - 财政年份:2019
- 资助金额:
$ 45.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Automatic acquisition of optimized acoustic model unit for automatic speech recognition using deep learning
使用深度学习自动获取用于自动语音识别的优化声学模型单元
- 批准号:
19K12027 - 财政年份:2019
- 资助金额:
$ 45.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)