Nonparametric, Semiparametric, and Bootstrap Methods in Econometrics
计量经济学中的非参数、半参数和 Bootstrap 方法
基本信息
- 批准号:9910925
- 负责人:
- 金额:$ 19.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-04-01 至 2001-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project consists of research on three topics with wide potential empirical application: testing parametric models against nonparametric alternatives, Semiparametric estimation of proportional hazard models with unobserved heterogeneity, and bootstrap methods for econometric models estimated from time series. All build on prior work by the investigator. The first topic is concerned with testing a parametric model of a (possibly vector valued) conditional moment or quartile function against a nonparametric alternative. The research will develop tests that are uniformly consistent over smooth, nonparametric alternative models whose distance from the parametric model converges to zero at the fastest possible rate as the sample size increases. Tests which do not require a priori knowledge of the smoothness of the alternative model will also be developed. These properties provide important practical benefits in terms of power, and the new research will develop tests for more general parametric models and for models based on time-series data. The second topic is concerned with estimating proportional hazard models with unobserved heterogeneity. Neither the baseline hazard function nor the distribution of the unobserved heterogeneity will be assumed to belong to a known, finite-dimensional parametric family of functions. They will be treated nonparametrically. The research will focus particularly on fixed-effects models for panel data, models with covariates that are time varying within spells, and cross-sectional models in which the unobserved heterogeneity is an unknown form of heteroskedasticity. All of the models are relevant to applied research. The third topic is concerned with testing hypotheses about a finite-dimensional parameter that is estimated by the generalized method of moments (GMM) using dependent data. Since first-order approximations can be very inaccurate with the sample sizes found in applications, the true and nominal probabilities that a test rejects a correct null hypothesis can be very different when critical values are based on first-order asymptotic approximations. Similarly, the true and nominal coverage probabilities of confidence intervals based on first-order approximations can be very different. The block bootstrap provides a way to obtain improved approximations with dependent data, but recent research has shown that the amount of improvement is not large. The new research will investigate the use of the sieve bootstrap in which the data generation process is approximated by an expanding sequence of finite-dimensional parametric models, and bootstrap samples are generated by simulation from the sieve approximation. In settings much simpler than those of GMM estimation and testing, it has been found that the sieve bootstrap provides a substantially greater improvement over first-order approximations than does the block bootstrap. The new research will investigate whether the improved performance of the sieve bootstrap extends to the kinds of tests and models to which for which GMM is typically used in economics. In addition, the research will investigate whether iterated versions of the sieve bootstrap can be used to provide asymptotic refinements without the need for heteroskedasticity and autocorrelation consistent (MAC) covariance matrix estimation.
本项目包括三个具有广泛实证应用潜力的主题:参数模型对非参数替代方案的检验,未观察到异质性的比例风险模型的半参数估计,以及从时间序列估计的计量经济模型的自举方法。所有这些都建立在调查员之前的工作基础上。第一个主题是测试(可能是矢量值)条件矩或四分位函数的参数模型与非参数替代。该研究将开发在平滑、非参数替代模型上一致的测试,随着样本量的增加,这些模型与参数模型的距离以尽可能快的速度收敛到零。还将开发不需要先验地了解备选模型的平滑性的测试。这些特性在功率方面提供了重要的实际好处,新的研究将为更一般的参数模型和基于时间序列数据的模型开发测试。第二个主题是关于估计未观察到异质性的比例风险模型。基线危险函数和未观察到的异质性的分布都不会被假设属于已知的有限维参数函数族。它们将被非参数化处理。研究将特别侧重于面板数据的固定效应模型,在时间段内随时间变化的协变量模型,以及未观察到的异质性是一种未知形式的异方差的横截面模型。所有模型都与应用研究相关。第三个主题是关于检验关于有限维参数的假设,该参数是由广义矩量法(GMM)使用相关数据估计的。由于在应用程序中发现的一阶近似与样本量可能非常不准确,因此当临界值基于一阶渐近近似时,检验拒绝正确零假设的真实概率和名义概率可能会非常不同。类似地,基于一阶近似的置信区间的真实覆盖概率和名义覆盖概率可能非常不同。块引导提供了一种利用相关数据获得改进的近似的方法,但最近的研究表明,改进的量并不大。新的研究将研究筛子自举的使用,其中数据生成过程由有限维参数模型的扩展序列近似,并通过筛近似的模拟生成自举样本。在比GMM估计和测试简单得多的设置中,已经发现筛引导比块引导提供了比一阶近似更大的改进。新的研究将调查是否改进的性能筛自举延伸到各种测试和模型,其中GMM通常用于经济学。此外,本研究将探讨是否可以使用迭代版本的筛自举法来提供渐近改进,而不需要异方差和自相关一致(MAC)协方差矩阵估计。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joel Horowitz其他文献
Incorporating choice dynamics in models of consumer behavior
- DOI:
10.1007/bf00554129 - 发表时间:
1991-08-01 - 期刊:
- 影响因子:2.500
- 作者:
Leigh McAlister;Rajendra Srivastava;Joel Horowitz;Morgan Jones;Wagner Kamakura;Jack Kulchitsky;Brian Ratchford;Gary Russel;Fareena Sultan;Tetsuo Yai;Doyle Weiss;Russ Winer - 通讯作者:
Russ Winer
Digitized by the Internet Archive in 2011 with Funding from Department of Economics Working Paper Series Likelihood Inference for Some Non-regular Econometric Models Likelihood Inference for Some Non-regular Econometric Models
2011 年在经济系资助下由互联网档案馆数字化 工作论文系列 一些非正则计量经济模型的似然推断 一些非正则计量经济模型的似然推断
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Boston. Library;V. Chernozhukov;H. Hong;Victor Chemozhukov;Econometric Models;Joe Altonji;Stephen Donald;Jerry Hausman;Bo Honoré;Joel Horowitz;Sha;Yuichi Kitamura;Rosa L. Matzkin;Whitney Newey;George Neumann;Harry J. Paarsch;F. Schorfheide;R. Sickles;Richard Spady;Max - 通讯作者:
Max
Postoperative complications after splenectomy for hematologic malignancies.
血液系统恶性肿瘤脾切除术后并发症。
- DOI:
10.1097/00000658-199603000-00010 - 发表时间:
1996 - 期刊:
- 影响因子:9
- 作者:
Joel Horowitz;Judy L. Smith;Thomas K. Weber;M. Rodriguez;Nicholas J Petrelli - 通讯作者:
Nicholas J Petrelli
Joel Horowitz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joel Horowitz', 18)}}的其他基金
Estimation and Inference with Nonparametric and High-Dimensional Econometric Models
非参数和高维计量经济模型的估计和推断
- 批准号:
0817552 - 财政年份:2008
- 资助金额:
$ 19.59万 - 项目类别:
Continuing Grant
Collaborative Research: Penalized Methods for Variable Selection and Estimation in High-Dimensional Models
合作研究:高维模型中变量选择和估计的惩罚方法
- 批准号:
0706348 - 财政年份:2007
- 资助金额:
$ 19.59万 - 项目类别:
Standard Grant
Semiparametric and Nonparametric Methods in Econometrics
计量经济学中的半参数和非参数方法
- 批准号:
0352675 - 财政年份:2004
- 资助金额:
$ 19.59万 - 项目类别:
Continuing Grant
Nonparametric, Semiparametric, and Bootstrap Methods in Econometrics
计量经济学中的非参数、半参数和 Bootstrap 方法
- 批准号:
0196506 - 财政年份:2001
- 资助金额:
$ 19.59万 - 项目类别:
Continuing Grant
Bootstrap and Semiparametric Methods in Econometrics
计量经济学中的 Bootstrap 和半参数方法
- 批准号:
9617925 - 财政年份:1997
- 资助金额:
$ 19.59万 - 项目类别:
Continuing Grant
Research On Semiparametric and Nonparametric Estimation of Econometric Models
计量经济模型的半参数和非参数估计研究
- 批准号:
9307677 - 财政年份:1993
- 资助金额:
$ 19.59万 - 项目类别:
Continuing Grant
Mathematical Sciences: Robust Estimation and Testing of Econometric Models for Panel Data
数学科学:面板数据计量经济模型的稳健估计和测试
- 批准号:
9208820 - 财政年份:1992
- 资助金额:
$ 19.59万 - 项目类别:
Continuing Grant
Tests of the External Validity of Spatial Choice Models Estimated from Choice Experiments
选择实验估计的空间选择模型的外部效度检验
- 批准号:
8520076 - 财政年份:1986
- 资助金额:
$ 19.59万 - 项目类别:
Continuing Grant
相似海外基金
Semiparametric Techniques for Data Exploitation across Heterogeneous Populations
跨异质群体数据开发的半参数技术
- 批准号:
2310942 - 财政年份:2023
- 资助金额:
$ 19.59万 - 项目类别:
Standard Grant
New Development of Nonparametric and Semiparametric Estimation Methods in Economics, Finance and Insurance
经济、金融和保险领域非参数和半参数估计方法的新进展
- 批准号:
23K01340 - 财政年份:2023
- 资助金额:
$ 19.59万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Semiparametric Efficient and Robust Inference on High-Dimensional Data
高维数据的半参数高效鲁棒推理
- 批准号:
2310578 - 财政年份:2023
- 资助金额:
$ 19.59万 - 项目类别:
Standard Grant
LEAPS-MPS: Flexible Semiparametric Transformation Models with Applications to Personalized Medicine
LEAPS-MPS:灵活的半参数转换模型及其在个性化医疗中的应用
- 批准号:
2316868 - 财政年份:2023
- 资助金额:
$ 19.59万 - 项目类别:
Standard Grant
Development of a semiparametric approach to accurate risk assessment and its applications
准确风险评估的半参数方法的开发及其应用
- 批准号:
23K16850 - 财政年份:2023
- 资助金额:
$ 19.59万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Empirical likelihood and other nonparametric and semiparametric statistical methods for complex surveys, reliability engineering, and environmental studies
用于复杂调查、可靠性工程和环境研究的经验可能性和其他非参数和半参数统计方法
- 批准号:
RGPIN-2017-06267 - 财政年份:2022
- 资助金额:
$ 19.59万 - 项目类别:
Discovery Grants Program - Individual
Distance-based robust inferences and model selection for semiparametric models
半参数模型的基于距离的鲁棒推理和模型选择
- 批准号:
RGPIN-2018-04328 - 财政年份:2022
- 资助金额:
$ 19.59万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Semiparametric and Reinforcement Learning for Precision Medicine
协作研究:精准医学的半参数和强化学习
- 批准号:
2210659 - 财政年份:2022
- 资助金额:
$ 19.59万 - 项目类别:
Standard Grant
Collaborative Research: Semiparametric and Reinforcement Learning for Precision Medicine
协作研究:精准医学的半参数和强化学习
- 批准号:
2210658 - 财政年份:2022
- 资助金额:
$ 19.59万 - 项目类别:
Standard Grant
Model Selection and Efficient Estimation in Semiparametric Regression Models with Complex and High-Dimensional Data
复杂高维数据半参数回归模型的模型选择和高效估计
- 批准号:
RGPIN-2018-06466 - 财政年份:2022
- 资助金额:
$ 19.59万 - 项目类别:
Discovery Grants Program - Individual