Model Selection and Efficient Estimation in Semiparametric Regression Models with Complex and High-Dimensional Data

复杂高维数据半参数回归模型的模型选择和高效估计

基本信息

  • 批准号:
    RGPIN-2018-06466
  • 负责人:
  • 金额:
    $ 4.08万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

In statistical science, a regression model is a mathematical formula used to describe association between a response variable and a set of covariates. Traditional regression analysis assumes that data concerning the response variable can be fully recorded and the mathematical formula is explicitly defined; it requires sample size to be larger than number of covariates. However, these assumptions are not always realistic in modelling real data. If one or more of these assumptions are violated, many existing approaches to statistical analysis cease to be useful. For example, responses may not be fully observed due to truncation and censoring; covariates may be high-dimensional and grouped. The aims of this proposal are to develop so called new semiparametric regression models to deal with these problems, and provide solutions to scientific problems which are related to Canadians' economics and health. The responses in these regression models could be a patient's lifetime, a person's income, and an insurance company's claim; the covariates could be a patient's genes and treatments received, a person's social and economic factors. For example, in genomics studies for cancer diseases, thousands of genes are measured and some of them might be related to a disease and affect patients' lifetime, besides, measurements of gene expression can be grouped by gene pathways. To prolong patients' lifetime, it is very important to identify and select those important individual genes and gene groups through our new regression models, then find an effective treatment to cure the disease and improve quality of life. In addition to the theoretical innovations from the proposed research, the research outcomes would be extremely useful and appealing from a practical point of view. For instance, in one of my collaborative projects on the data analysis from the Canadian Study of Health and Aging, one of the largest epidemiological studies of dementia, where survival time was left-truncated and right-censored. Compared to Alzheimer, vascular dementia has been understudied. Our preliminary analysis using the proposed new statistical method of incorporating information from the truncation time distribution provides more accurate results to show that the elderly people with vascular dementia have worse survival than those with Alzheimer. Our result will give an answer on the impact of dementia on life expectancy and helps epidemiologists and patients to understand and cure the diseases better. The proposed program provides opportunities for the training of highly qualified personnel's (HQPs) at all levels, either through fundamental methodological research or collaborative projects. Further, our research outcomes will be made easily and widely accessible to Canadians, through publishing research papers in high-impact and open-access journals and distributing computer software in platforms such as R and GitHub.
在统计科学中,回归模型是一种数学公式,用于描述响应变量与一组协变量之间的关联。传统的回归分析假设可以完全记录有关响应变量的数据,并且明确定义了数学公式;它要求样本量大于协变量数量。但是,这些假设在建模实际数据时并不总是现实的。如果违反了这些假设中的一个或多个,那么许多现有的统计分析方法将不再有用。例如,由于截断和审查,可能无法完全观察到响应。协变量可能是高维且分组的。该提案的目的是开发所谓的新的半参数回归模型来解决这些问题,并为与加拿大人的经济学和健康有关的科学问题提供解决方案。这些回归模型中的回答可能是患者的一生,一个人的收入和保险公司的索赔;协变量可能是患者的基因和治疗方法,即一个人的社会和经济因素。例如,在癌症疾病的基因组学研究中,测量了数千种基因,其中一些基因可能与疾病有关,并影响患者的寿命,此外,基因表达的测量可以通过基因途径进行分组。为了延长患者的寿命,通过我们的新回归模型识别和选择这些重要的个体基因和基因组非常重要,然后找到一种有效的治疗方法来治愈疾病并改善生活质量。除了提出的研究的理论创新外,从实际的角度来看,研究成果将非常有用且具有吸引力。例如,在我从加拿大健康和衰老研究的数据分析上进行的一个协作项目中,这是最大的痴呆流行病学研究之一,其中生存时间左截止和右审查。与阿尔茨海默氏症相比,血管性痴呆症已被研究。我们使用拟议的新统计方法的初步分析,该方法合并了截断时间分布中的信息提供了更准确的结果,以表明血管性痴呆的老年人的生存率要比患有阿尔茨海默氏症的老年人差。我们的结果将为痴呆症对预期寿命的影响提供答案,并帮助流行病学家和患者更好地理解和治愈疾病。拟议的计划为通过基本的方法论研究或协作项目在各个层面上培训高素质人员(HQP)提供了机会。此外,通过发表高影响力和开放访问期刊的研究论文,并将计算机软件分发在R和GitHub等平台上,加拿大人将轻松且广泛地访问我们的研究成果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lu, Xuewen其他文献

Estimation of the Birnbaum-Saunders regression model with current status data
使用当前状态数据估计 Birnbaum-Saunders 回归模型
Real-time quantitative PCR detection of circulating tumor cells using tag DNA mediated signal amplification strategy
使用标签DNA介导的信号放大策略实时定量PCR检测循环肿瘤细胞
Improved performance of lateral flow immunoassays for alpha-fetoprotein and vanillin by using silica shell-stabilized gold nanoparticles
使用二氧化硅壳稳定的金纳米粒子提高甲胎蛋白和香草醛的侧流免疫分析性能
  • DOI:
    10.1007/s00604-018-3107-9
  • 发表时间:
    2019-01-01
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Lu, Xuewen;Mei, Ting;Fang, Zhiyuan
  • 通讯作者:
    Fang, Zhiyuan
Longitudinal Data Analysis with Event Time as a Covariate
  • DOI:
    10.1007/s12561-010-9021-2
  • 发表时间:
    2010-07-01
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Lu, Xuewen;Nan, Bin;Sowers, MaryFran
  • 通讯作者:
    Sowers, MaryFran
A bibliometric analysis of publications on obsessive-compulsive disorder using VOSviewer.
  • DOI:
    10.3389/fpsyt.2023.1136931
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Tang, Yimiao;Lu, Xuewen;Wan, Xin;Hu, Maorong
  • 通讯作者:
    Hu, Maorong

Lu, Xuewen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lu, Xuewen', 18)}}的其他基金

Model Selection and Efficient Estimation in Semiparametric Regression Models with Complex and High-Dimensional Data
复杂高维数据半参数回归模型的模型选择和高效估计
  • 批准号:
    RGPIN-2018-06466
  • 财政年份:
    2021
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Discovery Grants Program - Individual
Model Selection and Efficient Estimation in Semiparametric Regression Models with Complex and High-Dimensional Data
复杂高维数据半参数回归模型的模型选择和高效估计
  • 批准号:
    RGPIN-2018-06466
  • 财政年份:
    2020
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Discovery Grants Program - Individual
Model Selection and Efficient Estimation in Semiparametric Regression Models with Complex and High-Dimensional Data
复杂高维数据半参数回归模型的模型选择和高效估计
  • 批准号:
    RGPIN-2018-06466
  • 财政年份:
    2019
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Discovery Grants Program - Individual
Model Selection and Efficient Estimation in Semiparametric Regression Models with Complex and High-Dimensional Data
复杂高维数据半参数回归模型的模型选择和高效估计
  • 批准号:
    RGPIN-2018-06466
  • 财政年份:
    2018
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Discovery Grants Program - Individual
Inference and variable selection in semiparametric survival models with censored or missing data
具有删失或缺失数据的半参数生存模型中的推理和变量选择
  • 批准号:
    261567-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Discovery Grants Program - Individual
Inference and variable selection in semiparametric survival models with censored or missing data
具有删失或缺失数据的半参数生存模型中的推理和变量选择
  • 批准号:
    261567-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Discovery Grants Program - Individual
Inference and variable selection in semiparametric survival models with censored or missing data
具有删失或缺失数据的半参数生存模型中的推理和变量选择
  • 批准号:
    261567-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Discovery Grants Program - Individual
Inference and variable selection in semiparametric survival models with censored or missing data
具有删失或缺失数据的半参数生存模型中的推理和变量选择
  • 批准号:
    261567-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Discovery Grants Program - Individual
Inference and variable selection in semiparametric survival models with censored or missing data
具有删失或缺失数据的半参数生存模型中的推理和变量选择
  • 批准号:
    261567-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Discovery Grants Program - Individual
Semiparametric statistical methods for censored or missing data and their applications in survival analysis and other related areas
截尾或缺失数据的半参数统计方法及其在生存分析和其他相关领域的应用
  • 批准号:
    261567-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

用于运动想象的脑机接口深度学习模型的高效算法研究
  • 批准号:
    61701270
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
高效率视频编码中联合非纹理模型的率失真优化编码技术研究
  • 批准号:
    61562023
  • 批准年份:
    2015
  • 资助金额:
    39.0 万元
  • 项目类别:
    地区科学基金项目
基于层次选择性注意的高效视频编码算法研究
  • 批准号:
    61103072
  • 批准年份:
    2011
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
状态空间模型参数的高效序贯蒙特卡洛估计及在金融中的应用
  • 批准号:
    11101341
  • 批准年份:
    2011
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
畜禽系谱群体重要经济性状位点的高效力精细定位方法
  • 批准号:
    31001001
  • 批准年份:
    2010
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Efficient and privacy-enhancing consent management for health informatics data sharing
针对健康信息学数据共享的高效且增强隐私的同意管理
  • 批准号:
    10385293
  • 财政年份:
    2021
  • 资助金额:
    $ 4.08万
  • 项目类别:
Model Selection and Efficient Estimation in Semiparametric Regression Models with Complex and High-Dimensional Data
复杂高维数据半参数回归模型的模型选择和高效估计
  • 批准号:
    RGPIN-2018-06466
  • 财政年份:
    2021
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Discovery Grants Program - Individual
Model Selection and Efficient Estimation in Semiparametric Regression Models with Complex and High-Dimensional Data
复杂高维数据半参数回归模型的模型选择和高效估计
  • 批准号:
    RGPIN-2018-06466
  • 财政年份:
    2020
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced Imaging and Dosimetry Core
先进的成像和剂量测定核心
  • 批准号:
    10416051
  • 财政年份:
    2020
  • 资助金额:
    $ 4.08万
  • 项目类别:
Advanced Imaging and Dosimetry Core
先进的成像和剂量测定核心
  • 批准号:
    10672961
  • 财政年份:
    2020
  • 资助金额:
    $ 4.08万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了