Geometry of Operator Spaces

算子空间的几何

基本信息

  • 批准号:
    9970369
  • 负责人:
  • 金额:
    $ 6.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-07-15 至 2001-12-31
  • 项目状态:
    已结题

项目摘要

AbstractOikhbergThe PI plans to continue his work on several aspects of geometry of operator spaces. One line of work deals with separable extension properties. Here the most intriguing problem is whether K (the space of compact operators on a separable Hilbert space) is complemented in every separable operator space containing it (this is a "non-commutative" version of a classical result of Sobczyk). A related issue is giving a complete description of separable locally reflexive operator spaces which are completely complemented in every separable locally reflexive operator superspace (an operator space counterpart of Zippin's characterization of the space of convergent sequences). Another direction of research is the study of maximal operator spaces (quotients of duals of commutative C*-algebras). The PI plans to determine the cardinality of the set of n-dimensional subspaces of maximal spaces, as well as the structure of n-dimensional subspaces of the dual of a 2n-dimensional commutative C*-algebra (in the spirit of Kashin's work). Possible applications of the proposed research include better understanding of the structure of function spaces, of the space of operators on a Hilbert space, and Banach space geometry in general (extensions of local reflexivity).One of the key mathematical tools of quantum mechanics is replacing scalars (numbers) by operators on a Hilbert space (they can be thought of as infinite matrices). Further exploration in this direction led to the development of the theory of C*-algebras, and, later, to the introduction of the notion of operator space (also called "non-commutative" or "quantized Banach space"). One can view an operator space as a Banach space with additional structure, induced by its embedding into the C*-algebra B(H) of bounded linear operators on a Hilbert space H. The investigation of operator spaces has advanced very rapidly over the last ten years, combining ideas and techniques from Banach space theory and the theory of C*-algebras. It has already produced answers to some long-standing problems of Operator Theory. The proposed research deals with two themes: the existence of non-commutative analogs of classical Banach space results; and the use of Banach space methods in the operator space case. If successful, this research will advance our understanding of connections between Banach and operator spaces, and potentially, enhance our knowledge of physical phenomena.
PI计划继续他的工作的几个方面的几何算子空间。其中一条工作线处理可分离的扩展属性。这里最有趣的问题是K(可分希尔伯特空间上的紧算子空间)是否在包含它的每个可分算子空间中是可补的(这是Sobczyk经典结果的“非交换”版本)。 一个相关的问题是给出可分局部自反算子空间的完整描述,这些空间在每个可分局部自反算子超空间中是完全互补的(齐平对收敛序列空间的刻画的算子空间对应物)。另一个研究方向是研究极大算子空间(交换C*-代数的子空间)。PI计划确定极大空间的n维子空间集合的基数,以及2n维交换C*-代数的对偶的n维子空间的结构(在Kashin工作的精神下)。这项研究可能的应用包括更好地理解函数空间的结构,希尔伯特空间上的算子空间,以及一般的Banach空间几何(局部自反性的扩展)。量子力学的关键数学工具之一是用希尔伯特空间上的算子(它们可以被认为是无限矩阵)代替标量(数字)。在这个方向上的进一步探索导致了C*-代数理论的发展,后来又引入了算子空间(也称为“非交换”或“量化Banach空间”)的概念。 人们可以把算子空间看作是一个具有附加结构的Banach空间,这是由于它嵌入到Hilbert空间H上的有界线性算子的C*-代数B(H)中而引起的。在过去的十年中,算子空间的研究进展非常迅速,结合了Banach空间理论和C*-代数理论的思想和技术。它已经为算子理论的一些长期存在的问题提供了答案。拟议的研究涉及两个主题:存在的非交换类似物的经典Banach空间的结果;和使用的Banach空间方法在运营商空间的情况下。如果成功,这项研究将促进我们对Banach空间和算子空间之间联系的理解,并可能增强我们对物理现象的认识。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Timur Oikhberg其他文献

Operator spaces with few completely bounded maps
  • DOI:
    10.1007/s00208-003-0481-2
  • 发表时间:
    2003-11-24
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Timur Oikhberg;Éric Ricard
  • 通讯作者:
    Éric Ricard
Automatic continuity of orthogonality or disjointness preserving bijections
  • DOI:
    10.1007/s13163-011-0089-0
  • 发表时间:
    2011-11-18
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    Timur Oikhberg;Antonio M. Peralta;Daniele Puglisi
  • 通讯作者:
    Daniele Puglisi
The non-commutative Gurarii space
  • DOI:
    10.1007/s00013-005-1631-4
  • 发表时间:
    2006-04-01
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Timur Oikhberg
  • 通讯作者:
    Timur Oikhberg
Subspaces of Maximal Operator Spaces
Spaces of Operators, the ψ-Daugavet Property, and Numerical Indices
  • DOI:
    10.1007/s11117-005-2779-7
  • 发表时间:
    2005-12-01
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Timur Oikhberg
  • 通讯作者:
    Timur Oikhberg

Timur Oikhberg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Timur Oikhberg', 18)}}的其他基金

Geometry of Banach spaces and their spaces of operators
Banach空间的几何及其算子空间
  • 批准号:
    1912897
  • 财政年份:
    2018
  • 资助金额:
    $ 6.24万
  • 项目类别:
    Standard Grant
CAREER: The Geography of Tame Ordered Structures
职业:驯服有序结构的地理
  • 批准号:
    1654725
  • 财政年份:
    2017
  • 资助金额:
    $ 6.24万
  • 项目类别:
    Continuing Grant
Geometric Structure of Operator Spaces
算子空间的几何结构
  • 批准号:
    0500957
  • 财政年份:
    2005
  • 资助金额:
    $ 6.24万
  • 项目类别:
    Standard Grant
Geometric Aspects of Operator Space Theory
算子空间理论的几何方面
  • 批准号:
    0200714
  • 财政年份:
    2002
  • 资助金额:
    $ 6.24万
  • 项目类别:
    Standard Grant
Geometry of Operator Spaces
算子空间的几何
  • 批准号:
    0296094
  • 财政年份:
    2001
  • 资助金额:
    $ 6.24万
  • 项目类别:
    Standard Grant

相似海外基金

Operator theory on Banach spaces
Banach空间的算子理论
  • 批准号:
    2886073
  • 财政年份:
    2023
  • 资助金额:
    $ 6.24万
  • 项目类别:
    Studentship
K-theory of Operator Algebras and Index Theory on Spaces of Singularities
算子代数的K理论与奇点空间索引论
  • 批准号:
    2247322
  • 财政年份:
    2023
  • 资助金额:
    $ 6.24万
  • 项目类别:
    Continuing Grant
Banach algebras, operator spaces and their applications to locally compact quantum groups
Banach代数、算子空间及其在局部紧量子群中的应用
  • 批准号:
    RGPIN-2019-04579
  • 财政年份:
    2022
  • 资助金额:
    $ 6.24万
  • 项目类别:
    Discovery Grants Program - Individual
Multi-variable Hardy Spaces and Operator Theory
多变量Hardy空间和算子理论
  • 批准号:
    RGPIN-2020-05683
  • 财政年份:
    2022
  • 资助金额:
    $ 6.24万
  • 项目类别:
    Discovery Grants Program - Individual
Banach algebras, operator spaces and their applications to locally compact quantum groups
Banach代数、算子空间及其在局部紧量子群中的应用
  • 批准号:
    RGPIN-2019-04579
  • 财政年份:
    2021
  • 资助金额:
    $ 6.24万
  • 项目类别:
    Discovery Grants Program - Individual
Multi-variable Hardy Spaces and Operator Theory
多变量Hardy空间和算子理论
  • 批准号:
    RGPIN-2020-05683
  • 财政年份:
    2021
  • 资助金额:
    $ 6.24万
  • 项目类别:
    Discovery Grants Program - Individual
Operator algebras of multipliers on reproducing kernel Hilbert spaces
再生核希尔伯特空间上的乘子算子代数
  • 批准号:
    RGPIN-2016-05914
  • 财政年份:
    2021
  • 资助金额:
    $ 6.24万
  • 项目类别:
    Discovery Grants Program - Individual
Conference on Multivariable Operator Theory and Function Spaces in Several Variables
多变量算子理论与多变量函数空间会议
  • 批准号:
    2055013
  • 财政年份:
    2021
  • 资助金额:
    $ 6.24万
  • 项目类别:
    Standard Grant
Operator algebras of multipliers on reproducing kernel Hilbert spaces
再生核希尔伯特空间上的乘子算子代数
  • 批准号:
    RGPIN-2016-05914
  • 财政年份:
    2020
  • 资助金额:
    $ 6.24万
  • 项目类别:
    Discovery Grants Program - Individual
Multi-variable Hardy Spaces and Operator Theory
多变量Hardy空间和算子理论
  • 批准号:
    RGPIN-2020-05683
  • 财政年份:
    2020
  • 资助金额:
    $ 6.24万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了