Geometric Structure of Operator Spaces
算子空间的几何结构
基本信息
- 批准号:0500957
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-01 至 2008-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The current project aims to investigate geometric properties of operator spaces, with the emphasis on two topics: the existence of operator spaces with prescribed properties, and the structure of the Fermion algebra and spaces related to it. The problem of constructing spaces with given properties was first posed by Grothendieck, and later attracted attention of many accomplished mathematicians, such as Gowers and Maurey. However, many questions in this area remain open, chief among them the so-called ``square-cube problem'': the existence of a space which is not isomorphic to its square, but such that its square is isomorphic to its cube. We plan to approach this class of problems using operator space ``building blocks''. In investigating the Fermion algebra, we plan to discover what properties it shares with spaces of functions. In particular, we will investigate the complemented and completely complemented subspaces of this algebra.One of the key advances in physics over the past century was the creation and development of quantum mechanics. The main mathematical tool of quantum mechanics is replacing scalars (numbers) by operators on a Hilbert space (they can be thought of as infinite matrices). Initially, the mathematicians and physicists investigated only single operators, but later the need to consider whole sets of operators became apparent. Research by von Neumann, Gelfand, and others led to the development of the theory of C*-algebras. More recently, operator spaces (also called ``non-commutative'' or ``quantized Banach spaces'') arose from the study of maps on C*-algebras. It turns out that operator spaces provide an appropriate framework for studying algebras of operators. In fact, several long-standing problems in operator theory have been solved using operator space techniques. The current project deals with two topics: the existence of operator spaces with prescribed properties; and an investigation of the operator space structure of classical spaces, such as the Fermion algebra (related to the behavior of sub-atomic particles such as protons or neutrons). If successful, this research will advance our understanding of operator spaces, and potentially, enhance our knowledge of physical phenomena.
本项目主要研究算子空间的几何性质,重点研究两个问题:具有给定性质的算子空间的存在性,以及费米子代数及其相关空间的结构。构造具有给定性质的空间的问题最早由Grothendieck提出,后来引起了许多有成就的数学家的注意,如Gowers和Maurey。然而,这一领域的许多问题仍然悬而未决,其中最主要的是所谓的“正方形-立方体问题”:存在一个空间,它不同构于它的正方形,但它的正方形同构于它的立方体。我们计划使用算子空间的“构建块”来处理这类问题。在研究费米子代数时,我们计划发现它与函数空间共有什么性质。特别地,我们将研究这个代数的可补子空间和完全可补子空间。在过去的世纪里,物理学的关键进展之一是量子力学的创立和发展。量子力学的主要数学工具是用希尔伯特空间上的算子(它们可以被认为是无限矩阵)代替标量(数字)。最初,数学家和物理学家只研究单个算子,但后来考虑整个算子集的必要性变得明显。冯·诺依曼、盖尔方和其他人的研究导致了C*-代数理论的发展。最近,算子空间(也称为“非交换”或“量子化Banach空间”)从C*-代数上的映射的研究中产生。事实证明,算子空间为研究算子代数提供了一个合适的框架。事实上,算子理论中的一些长期存在的问题已经使用算子空间技术得到了解决。目前的项目涉及两个主题:具有指定属性的算子空间的存在;以及经典空间的算子空间结构的研究,例如费米子代数(与质子或中子等亚原子粒子的行为有关)。如果成功,这项研究将促进我们对算子空间的理解,并可能增强我们对物理现象的了解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Timur Oikhberg其他文献
Operator spaces with few completely bounded maps
- DOI:
10.1007/s00208-003-0481-2 - 发表时间:
2003-11-24 - 期刊:
- 影响因子:1.400
- 作者:
Timur Oikhberg;Éric Ricard - 通讯作者:
Éric Ricard
Automatic continuity of orthogonality or disjointness preserving bijections
- DOI:
10.1007/s13163-011-0089-0 - 发表时间:
2011-11-18 - 期刊:
- 影响因子:1.700
- 作者:
Timur Oikhberg;Antonio M. Peralta;Daniele Puglisi - 通讯作者:
Daniele Puglisi
The non-commutative Gurarii space
- DOI:
10.1007/s00013-005-1631-4 - 发表时间:
2006-04-01 - 期刊:
- 影响因子:0.500
- 作者:
Timur Oikhberg - 通讯作者:
Timur Oikhberg
Subspaces of Maximal Operator Spaces
- DOI:
10.1007/s00020-002-1177-9 - 发表时间:
2004-01-01 - 期刊:
- 影响因子:0.900
- 作者:
Timur Oikhberg - 通讯作者:
Timur Oikhberg
Spaces of Operators, the ψ-Daugavet Property, and Numerical Indices
- DOI:
10.1007/s11117-005-2779-7 - 发表时间:
2005-12-01 - 期刊:
- 影响因子:0.900
- 作者:
Timur Oikhberg - 通讯作者:
Timur Oikhberg
Timur Oikhberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Timur Oikhberg', 18)}}的其他基金
Geometry of Banach spaces and their spaces of operators
Banach空间的几何及其算子空间
- 批准号:
1912897 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: The Geography of Tame Ordered Structures
职业:驯服有序结构的地理
- 批准号:
1654725 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Continuing Grant
Geometric Aspects of Operator Space Theory
算子空间理论的几何方面
- 批准号:
0200714 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Theory and Applications of Structure-Conforming Deep Operator Learning
合作研究:结构符合深度算子学习的理论与应用
- 批准号:
2309778 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Theory and Applications of Structure-Conforming Deep Operator Learning
合作研究:结构符合深度算子学习的理论与应用
- 批准号:
2309777 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Structure properties of non-selfadjoint operator algebras
非自共轭算子代数的结构性质
- 批准号:
RGPIN-2019-05430 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Structure properties of non-selfadjoint operator algebras
非自共轭算子代数的结构性质
- 批准号:
RGPIN-2019-05430 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Structure properties of non-selfadjoint operator algebras
非自共轭算子代数的结构性质
- 批准号:
RGPIN-2019-05430 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Structure properties of non-selfadjoint operator algebras
非自共轭算子代数的结构性质
- 批准号:
RGPIN-2019-05430 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Global and internal structure of operator algebras
算子代数的全局和内部结构
- 批准号:
RGPIN-2015-06205 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Geometric structure in quantum information theory based on Operator Theory and its applications
基于算子理论的量子信息论中的几何结构及其应用
- 批准号:
19K03542 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating the structure of positive operator-valued measures
研究积极的运营商价值措施的结构
- 批准号:
538703-2019 - 财政年份:2019
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Structure properties of non-selfadjoint operator algebras
非自共轭算子代数的结构性质
- 批准号:
DGECR-2019-00368 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Launch Supplement














{{item.name}}会员




