Geometric Structure of Operator Spaces

算子空间的几何结构

基本信息

  • 批准号:
    0500957
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-07-01 至 2008-06-30
  • 项目状态:
    已结题

项目摘要

The current project aims to investigate geometric properties of operator spaces, with the emphasis on two topics: the existence of operator spaces with prescribed properties, and the structure of the Fermion algebra and spaces related to it. The problem of constructing spaces with given properties was first posed by Grothendieck, and later attracted attention of many accomplished mathematicians, such as Gowers and Maurey. However, many questions in this area remain open, chief among them the so-called ``square-cube problem'': the existence of a space which is not isomorphic to its square, but such that its square is isomorphic to its cube. We plan to approach this class of problems using operator space ``building blocks''. In investigating the Fermion algebra, we plan to discover what properties it shares with spaces of functions. In particular, we will investigate the complemented and completely complemented subspaces of this algebra.One of the key advances in physics over the past century was the creation and development of quantum mechanics. The main mathematical tool of quantum mechanics is replacing scalars (numbers) by operators on a Hilbert space (they can be thought of as infinite matrices). Initially, the mathematicians and physicists investigated only single operators, but later the need to consider whole sets of operators became apparent. Research by von Neumann, Gelfand, and others led to the development of the theory of C*-algebras. More recently, operator spaces (also called ``non-commutative'' or ``quantized Banach spaces'') arose from the study of maps on C*-algebras. It turns out that operator spaces provide an appropriate framework for studying algebras of operators. In fact, several long-standing problems in operator theory have been solved using operator space techniques. The current project deals with two topics: the existence of operator spaces with prescribed properties; and an investigation of the operator space structure of classical spaces, such as the Fermion algebra (related to the behavior of sub-atomic particles such as protons or neutrons). If successful, this research will advance our understanding of operator spaces, and potentially, enhance our knowledge of physical phenomena.
当前项目旨在研究算子空间的几何性质,重点关注两个主题:具有规定性质的算子空间的存在性,以及费米子代数及其相关空间的结构。构造具有给定属性的空间的问题首先由格洛滕迪克提出,后来引起了许多有成就的数学家的关注,例如高尔斯和莫雷。然而,这一领域的许多问题仍然悬而未决,其中最主要的是所谓的“平方立方问题”:是否存在与其正方形同构的空间,但其正方形与其立方体同构。我们计划使用运算符空间“构建块”来解决此类问题。在研究费米子代数时,我们计划发现它与函数空间共有哪些属性。特别是,我们将研究该代数的补子空间和完全补子空间。上个世纪物理学的关键进展之一是量子力学的创建和发展。量子力学的主要数学工具是用希尔伯特空间上的运算符替换标量(数字)(它们可以被认为是无限矩阵)。最初,数学家和物理学家仅研究单个运算符,但后来考虑整组运算符的需要变得显而易见。冯·诺依曼、盖尔范德等人的研究促进了 C* 代数理论的发展。最近,算子空间(也称为“非交换”或“量化巴拿赫空间”)源于对 C* 代数映射的研究。事实证明,算子空间为研究算子代数提供了一个合适的框架。事实上,算子理论中的几个长期存在的问题已经通过算子空间技术得到了解决。当前的项目涉及两个主题:具有规定属性的算子空间的存在;以及对经典空间的算子空间结构的研究,例如费米子代数(与质子或中子等亚原子粒子的行为有关)。如果成功,这项研究将增进我们对算子空间的理解,并有可能增强我们对物理现象的了解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Timur Oikhberg其他文献

Operator spaces with few completely bounded maps
  • DOI:
    10.1007/s00208-003-0481-2
  • 发表时间:
    2003-11-24
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Timur Oikhberg;Éric Ricard
  • 通讯作者:
    Éric Ricard
Automatic continuity of orthogonality or disjointness preserving bijections
  • DOI:
    10.1007/s13163-011-0089-0
  • 发表时间:
    2011-11-18
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    Timur Oikhberg;Antonio M. Peralta;Daniele Puglisi
  • 通讯作者:
    Daniele Puglisi
Subspaces of Maximal Operator Spaces
The non-commutative Gurarii space
  • DOI:
    10.1007/s00013-005-1631-4
  • 发表时间:
    2006-04-01
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Timur Oikhberg
  • 通讯作者:
    Timur Oikhberg
Spaces of Operators, the ψ-Daugavet Property, and Numerical Indices
  • DOI:
    10.1007/s11117-005-2779-7
  • 发表时间:
    2005-12-01
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Timur Oikhberg
  • 通讯作者:
    Timur Oikhberg

Timur Oikhberg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Timur Oikhberg', 18)}}的其他基金

Geometry of Banach spaces and their spaces of operators
Banach空间的几何及其算子空间
  • 批准号:
    1912897
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: The Geography of Tame Ordered Structures
职业:驯服有序结构的地理
  • 批准号:
    1654725
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Geometric Aspects of Operator Space Theory
算子空间理论的几何方面
  • 批准号:
    0200714
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Geometry of Operator Spaces
算子空间的几何
  • 批准号:
    0296094
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Geometry of Operator Spaces
算子空间的几何
  • 批准号:
    9970369
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: Theory and Applications of Structure-Conforming Deep Operator Learning
合作研究:结构符合深度算子学习的理论与应用
  • 批准号:
    2309778
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Theory and Applications of Structure-Conforming Deep Operator Learning
合作研究:结构符合深度算子学习的理论与应用
  • 批准号:
    2309777
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Structure properties of non-selfadjoint operator algebras
非自共轭算子代数的结构性质
  • 批准号:
    RGPIN-2019-05430
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Structure properties of non-selfadjoint operator algebras
非自共轭算子代数的结构性质
  • 批准号:
    RGPIN-2019-05430
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Structure properties of non-selfadjoint operator algebras
非自共轭算子代数的结构性质
  • 批准号:
    RGPIN-2019-05430
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Structure properties of non-selfadjoint operator algebras
非自共轭算子代数的结构性质
  • 批准号:
    RGPIN-2019-05430
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Global and internal structure of operator algebras
算子代数的全局和内部结构
  • 批准号:
    RGPIN-2015-06205
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Geometric structure in quantum information theory based on Operator Theory and its applications
基于算子理论的量子信息论中的几何结构及其应用
  • 批准号:
    19K03542
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigating the structure of positive operator-valued measures
研究积极的运营商价值措施的结构
  • 批准号:
    538703-2019
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Structure properties of non-selfadjoint operator algebras
非自共轭算子代数的结构性质
  • 批准号:
    DGECR-2019-00368
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Launch Supplement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了