Diophantine Problems in Many Variables
多变量中的丢番图问题
基本信息
- 批准号:9970440
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-06-01 至 2003-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9970440This proposal is concerned with diophantine equations in many variables, in the context of the theory and application of the Hardy-Littlewood (circle) method. The proposer intends to pursue a number of investigations whose goal is an improved understanding of the existence and density of integer solutions of systems of homogeneous equations, and associated estimates for exponential sums of use in the circle method. Two themes play a large role in proposed investigations. In one direction, methods familiar from the application of the Hardy-Littlewood method to additive diophantine problems will be extended to handle diophantine equations more closely approximating general homogeneous equations. Here the proposers methods for handling exponential sums over binary forms, and over smooth numbers, are significant. In a second direction, the more elementary diagonalisation methods, originating in work of Brauer and Birch, will be extended so as to obtain more refined conclusions concerning the density of rational solutions to systems of diophantine equations.Number Theory studies the properties of integers (``whole numbers''). Since Antiquity, the study of diophantine equations (equations to be solved in integers) has formed a core component of Number Theory, and has recently influenced the development of codes and cryptosystems (applied, for example, in data storage systems such as compact disks, communications systems and banking security).
9970440在Hardy-Littlewood(圆)方法的理论和应用的背景下,本建议涉及多变量丢番图方程。作者打算进行一些研究,其目的是更好地理解齐次方程组的整数解的存在性和密度,以及圆法中使用的指数和的相关估计。在拟议的调查中,有两个主题发挥着重要作用。在一个方向上,从Hardy-Littlewood方法应用到加性丢番图问题的方法将被扩展到处理更接近于一般齐次方程的丢番图方程。在这里,提出的处理二进制形式和光滑数上的指数和的方法是有意义的。在第二个方向,起源于Brauer和Birch工作的更基本的对角化方法将被扩展,以获得关于丢番图方程组有理解的密度的更精细的结论。数论研究整数的性质。自古以来,丢番图方程(要以整数形式求解的方程)的研究形成了数论的核心组成部分,并在最近影响了代码和密码系统的发展(例如,应用于数据存储系统,如光盘、通信系统和银行安全)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Trevor Wooley其他文献
Trevor Wooley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Trevor Wooley', 18)}}的其他基金
Analytic Number Theory Motivated by Approximate Translation Invariance
由近似平移不变性推动的解析数论
- 批准号:
2001549 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Applications of the Hardy-Littlewood Method in Number Theory and Beyond
Hardy-Littlewood 方法在数论及其他领域的应用
- 批准号:
0140523 - 财政年份:2002
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Analytic Methods For Diophantine Problems
丢番图问题的解析方法
- 批准号:
9622773 - 财政年份:1996
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
GIG: Michigan Research Group in Number Theory: A Professional Development Program for New Doctorates
GIG:密歇根数论研究小组:新博士专业发展计划
- 批准号:
9510569 - 财政年份:1995
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
On Exponential Sums and Additive Diophantine Equations
关于指数和和可加性丢番图方程
- 批准号:
9303505 - 财政年份:1993
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似海外基金
Geometric approaches to quantum many body problems
量子多体问题的几何方法
- 批准号:
DE230100829 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Discovery Early Career Researcher Award
LEAPS-MPS: Computational Methods for Many-Physics Problems Involving Multi-Material Flows
LEAPS-MPS:涉及多材料流的许多物理问题的计算方法
- 批准号:
2302080 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Quantum circuit encoding algorithm for quantum many-body problems
量子多体问题的量子电路编码算法
- 批准号:
22K03479 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Automated analytic solutions to many-electron problems
多电子问题的自动分析解决方案
- 批准号:
RGPIN-2022-03882 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
LEAPS-MPS: Computational Methods for Many-Physics Problems Involving Multi-Material Flows
LEAPS-MPS:涉及多材料流的许多物理问题的计算方法
- 批准号:
2137934 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Using Mixed Discrete-Continuum Representations to Characterize the Dynamics of Large Many-Body Dynamics Problems
使用混合离散连续体表示来表征大型多体动力学问题的动力学
- 批准号:
1635004 - 财政年份:2016
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Optimization Algorithms for Decision Problems with Many Variables
多变量决策问题的优化算法
- 批准号:
1562466 - 财政年份:2016
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Electroweak interactions and relativistic many-body problems
电弱相互作用和相对论多体问题
- 批准号:
156206-2008 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
Subatomic Physics Envelope - Individual
Study on the mechanisms for collective motions of molecular and astronomical systems based the methods of many-body problems
基于多体问题方法研究分子和天文系统集体运动机制
- 批准号:
26800207 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Nimekula Shida Miaka Mingi' (I Have Eaten My Problems For Many Years): Embodiment Of Suffering Of Youth-headed Households - Social Abandonment And Support Of Youth Affected By HIV
Nimekula Shida Miaka Mingi(多年来我一直在吃我的问题):以青年为户主的家庭遭受苦难的体现 - 社会抛弃和支持受艾滋病毒影响的青年
- 批准号:
294349 - 财政年份:2013
- 资助金额:
$ 15万 - 项目类别: