Optimization Algorithms for Decision Problems with Many Variables

多变量决策问题的优化算法

基本信息

  • 批准号:
    1562466
  • 负责人:
  • 金额:
    $ 27.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-15 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

Decision-makers often strive to minimize the cost or maximize the performance of a system that depends on many decision variables. If the decision-maker can quantify the cost as a function of the decision variables, then computational methods can be used to obtain or approximate the optimal decision. For complicated cost functions arising in practice it may not be possible to know for sure that a proposed solution is optimal and one must settle for an approximate solution. Typical examples of such problems include choosing well sites and pumping rates for ground water pollution remediation, aligning medical images taken at different times, and determining the configuration of a collection of atoms that minimizes the potential energy. This award supports research into methods for solving such optimization problems and characterizing their inherent difficulty as the number of decision variables increases. These methods will be applicable to a broad range of problems in engineering, science, and industry.The optimization problems described above are called global optimization problems. It is well-known that global optimization is intractable in high dimensions in the worst-case complexity setting. The investigator will determine if continuous optimization is tractable in an asymptotic or average-case setting by establishing both upper and lower complexity bounds. The investigator will obtain upper complexity bounds by devising new optimization algorithms and proving their convergence rates. The project will use two approaches to algorithm design. One approach is to subdivide the domain into polytopes, and choose new function evaluation points within the polytope that maximize a criterion based on the size of the polytope and the observed function values at its vertices. The other approach is to use randomized point selection schemes that aim to obtain comparable results to the first approach, on average, but without the computational cost of maintaining the polyhedral subdivisions. The lower complexity bounds will establish the smallest error that can be obtained with any algorithm that uses a given average number of function evaluations. A key question that this research will attempt to answer is whether the lower complexity bounds grow exponentially with the dimension.
决策者往往努力使系统的成本最小化或性能最大化,这取决于许多决策变量。如果决策者能够将成本量化为决策变量的函数,则可以使用计算方法来获得或近似最优决策。对于在实践中出现的复杂的成本函数,可能不可能确定地知道所提出的解决方案是最优的,并且必须满足于近似解决方案。此类问题的典型例子包括选择地下水污染修复的井址和抽水率、对齐不同时间拍摄的医学图像以及确定使势能最小化的原子集合的配置。该奖项支持研究解决此类优化问题的方法,并随着决策变量数量的增加,描述其固有的难度。这些方法将适用于工程、科学和工业中的广泛问题。上述优化问题称为全局优化问题。众所周知,在最坏情况复杂度设置下,全局优化在高维中是难以处理的。研究者将通过建立复杂性的上界和下界来确定连续优化在渐近或平均情况下是否易于处理。研究人员将通过设计新的优化算法并证明其收敛速度来获得复杂性上限。该项目将使用两种算法设计方法。一种方法是将域细分为多面体,并在多面体内选择新的函数求值点,该新的函数求值点基于多面体的大小和在其顶点处观察到的函数值来最大化准则。另一种方法是使用随机点选择方案,其目的是获得与第一种方法相当的结果,平均而言,但没有维持多面体细分的计算成本。较低的复杂性界限将建立使用给定平均函数求值数的任何算法可以获得的最小误差。这项研究将试图回答的一个关键问题是,较低的复杂性界限是否随维度呈指数增长。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Calvin其他文献

A Global Perspective on Socioeconomic Determinants of Cardiovascular Health
心血管健康的社会经济决定因素的全球视角
  • DOI:
    10.1016/j.cjca.2024.07.024
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
    5.300
  • 作者:
    Bart Wilder;Alejandro Pinedo;Salaheldin Abusin;David Ansell;Adrian Matias Bacong;James Calvin;Sung Whoy Cha;Rami Doukky;Faisal Hasan;Shengyuan Luo;Ahmet Afşin Oktay;Latha Palaniappan;Natasha Rana;Frederick Berro Rivera;Basmah Fayaz;Ahmed Ali Suliman;Annabelle Santos Volgman
  • 通讯作者:
    Annabelle Santos Volgman
Convergence rate of a rectangular subdivision-based optimization algorithm for smooth multivariate functions
  • DOI:
    10.1007/s11590-021-01792-3
  • 发表时间:
    2021-08-11
  • 期刊:
  • 影响因子:
    1.100
  • 作者:
    Cuicui Zheng;James Calvin
  • 通讯作者:
    James Calvin
On convergence rate of a rectangular partition based global optimization algorithm
  • DOI:
    10.1007/s10898-018-0636-z
  • 发表时间:
    2018-03-07
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    James Calvin;Gražina Gimbutienė;William O. Phillips;Antanas Žilinskas
  • 通讯作者:
    Antanas Žilinskas
Improvement science supports the timely initiation of amiodarone after complex cardiac surgery to reduce postoperative atrial fibrillation
Itraconazole disposition after single oral and intravenous and multiple oral dosing in healthy cats.
健康猫单次口服、静脉注射和多次口服给药后伊曲康唑的分布。
  • DOI:
    10.2460/ajvr.1997.58.08.872
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    1
  • 作者:
    D. Boothe;I. Herring;James Calvin;Nelson Way;Joy Dvorak
  • 通讯作者:
    Joy Dvorak

James Calvin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Calvin', 18)}}的其他基金

Algorithms and Complexity for Global Optimization
全局优化的算法和复杂性
  • 批准号:
    0825381
  • 财政年份:
    2008
  • 资助金额:
    $ 27.88万
  • 项目类别:
    Standard Grant
MRI: Development of a High Density, High Performance Beowulf Cluster
MRI:高密度、高性能贝奥武夫集群的开发
  • 批准号:
    0216275
  • 财政年份:
    2002
  • 资助金额:
    $ 27.88万
  • 项目类别:
    Standard Grant
Efficient Simulation of Large-Scale Systems
大型系统的高效仿真
  • 批准号:
    9900117
  • 财政年份:
    1999
  • 资助金额:
    $ 27.88万
  • 项目类别:
    Continuing Grant
Average Complexity of Global Optimization
全局优化的平均复杂度
  • 批准号:
    9696243
  • 财政年份:
    1996
  • 资助金额:
    $ 27.88万
  • 项目类别:
    Standard Grant
Average Complexity of Global Optimization
全局优化的平均复杂度
  • 批准号:
    9500173
  • 财政年份:
    1995
  • 资助金额:
    $ 27.88万
  • 项目类别:
    Standard Grant
Research Initiation: Stochastic Optimization and Search Algorithms
研究启动:随机优化和搜索算法
  • 批准号:
    9010770
  • 财政年份:
    1990
  • 资助金额:
    $ 27.88万
  • 项目类别:
    Standard Grant

相似海外基金

Integrated Framework for Cooperative 3D Printing: Uncertainty Quantification, Decision Models, and Algorithms
协作 3D 打印的集成框架:不确定性量化、决策模型和算法
  • 批准号:
    2329739
  • 财政年份:
    2024
  • 资助金额:
    $ 27.88万
  • 项目类别:
    Standard Grant
CRII: CIF: Sequential Decision-Making Algorithms for Efficient Subset Selection in Multi-Armed Bandits and Optimization of Black-Box Functions
CRII:CIF:多臂老虎机中高效子集选择和黑盒函数优化的顺序决策算法
  • 批准号:
    2246187
  • 财政年份:
    2023
  • 资助金额:
    $ 27.88万
  • 项目类别:
    Standard Grant
Algorithms and Decision-Making Processes in Distributed Attacker-Defender Game
分布式攻防博弈中的算法和决策过程
  • 批准号:
    2799421
  • 财政年份:
    2022
  • 资助金额:
    $ 27.88万
  • 项目类别:
    Studentship
Implementing clinical decision support for improved outpatient neurorehabilitation post-stroke and spinal cord injury through the integration of wearable technology and deep learning algorithms.
通过集成可穿戴技术和深度学习算法,实施临床决策支持,以改善中风和脊髓损伤后的门诊神经康复。
  • 批准号:
    475572
  • 财政年份:
    2022
  • 资助金额:
    $ 27.88万
  • 项目类别:
    Studentship Programs
Machine learning algorithms for automated decision making under domain shift
领域转移下自动决策的机器学习算法
  • 批准号:
    2736505
  • 财政年份:
    2022
  • 资助金额:
    $ 27.88万
  • 项目类别:
    Studentship
EAGER: DCL: SaTC: Enabling Interdisciplinary Collab: Impact-aware Machine Learning for Fair and Private Decision Making: Algorithms and Applications in Juvenile Justice Systems
EAGER:DCL:SaTC:实现跨学科协作:影响感知机器学习促进公平和私人决策:少年司法系统中的算法和应用
  • 批准号:
    2209951
  • 财政年份:
    2022
  • 资助金额:
    $ 27.88万
  • 项目类别:
    Standard Grant
Algorithms and Tools for Big Data Analysis and Automated Real Time Optimal or Near Optimal Decision Making for Industrial Systems
用于工业系统大数据分析和自动实时最佳或接近最佳决策的算法和工具
  • 批准号:
    RGPIN-2017-05785
  • 财政年份:
    2022
  • 资助金额:
    $ 27.88万
  • 项目类别:
    Discovery Grants Program - Individual
New Algorithms for Markov Decision Processes and Reinforcement Learning
马尔可夫决策过程和强化学习的新算法
  • 批准号:
    2208163
  • 财政年份:
    2022
  • 资助金额:
    $ 27.88万
  • 项目类别:
    Continuing Grant
Sequential Decision-Making Algorithms in the Public Sector
公共部门的顺序决策算法
  • 批准号:
    567944-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 27.88万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Efficient Algorithms for Sequential Decision-making
顺序决策的高效算法
  • 批准号:
    DGECR-2022-00411
  • 财政年份:
    2022
  • 资助金额:
    $ 27.88万
  • 项目类别:
    Discovery Launch Supplement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了