Topics in Quantum Geometry
量子几何专题
基本信息
- 批准号:9970509
- 负责人:
- 金额:$ 6.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-07-01 至 2003-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractRieffelI propose to develop and apply a theory of quantum metric spaces. My point of departure will be the ideas of Alain Connes concerning quantum Riemannian manifolds. My emphasis will be on extending to quantum spaces, in the operator algebras setting, the notion of the Gromov-Hausdorff distance between metric spaces. I expect to apply this theory to the many situations already in view in the physics and mathematics of quantization where one has a sequence of quantum spaces which appear to be converging to another space, either quantum or classical. In most such situations of which I am aware, the present notions of convergence are either just heuristic, or quite weak. I believe that a quantum Gromov-Hausdorff convergence can often be applied to give a stronger form of convergence. Examples range from approximation by finite dimensional algebras such as frequently occurs in Berezin-Toeplitz quantization, to approximation of quantum field-theory models, especially those of integrable systems, say by lattice models, all the way to the hypothesized "M-theory" of string theory and its (hypothesized) approximation by "Matrix theory".Our nation's technological and economic success has at its foundation the mathematical models of the world around us which scientists develop in order to understand how to use the flood of data which flows from the laboratories of the experimental scientists. But human beings and computers can only deal with finite collections of numbers at a time. Thus in applying these mathematical models it is almost always necessary to approximate the infinite variability of our world by finite collections of numbers. It is then crucial to understand how valid any given approximation is. With respect to individual calculations this matter has received extensive study. But less study has been made of how complex models as a whole can be approximated well by simpler models as a whole. Relatively little is known about such "global" approximations in the case of the models of quantum physics, which is the part of physics which governs chemical and biochemical reactions, the functioning of semi-conductors, and many other key technologies. I propose to extend to the quantum realm one form of global approximation, called Gromov-Hausdorff distance, which has in recent years proved to be quite powerful in the classical realm for dealing with certain broad classes of mathematical situations. I expect to apply this global approximation method to better understand how to effectively approximate various models of quantum phenomena of current interest.
Rieffel提出发展和应用量子度量空间理论。我的出发点将是阿兰·康纳斯关于量子黎曼流形的思想。我的重点将是推广到量子空间,在算子代数的设置,度量空间之间的Gromov-Hausdorff距离的概念。我希望把这个理论应用到量子化的物理学和数学中已经存在的许多情况中,在这些情况下,一系列量子空间似乎正在收敛到另一个空间,无论是量子空间还是经典空间。就我所知,在大多数这样的情况下,目前的趋同概念要么只是启发式的,要么相当薄弱。我相信量子Gromov-Hausdorff收敛通常可以用来给出更强的收敛形式。例子从有限维代数的近似,如经常发生在Berezin-Toeplitz量子化,量子场论模型的近似,特别是那些可积系统,比如晶格模型,一直到弦理论的假设"M理论",(假设)通过"矩阵理论"近似我们国家在技术和经济上的成功,是以我们周围世界的数学模型为基础的,科学家们开发这些模型是为了了解如何利用从实验室流出的大量数据。实验科学家但是人类和计算机一次只能处理有限的数字集合。 因此,在应用这些数学模型时,几乎总是需要用有限的数字集合来近似我们世界的无限可变性。因此,理解任何给定近似的有效性是至关重要的。关于个别计算,这一问题已得到广泛研究。但是,对于复杂的模型如何能被简单的模型很好地近似的研究却很少。在量子物理学模型中,对这种"全局"近似的了解相对较少,量子物理学是物理学的一部分,它控制着化学和生物化学反应,半导体的功能以及许多其他关键技术。我建议将一种形式的全局近似扩展到量子领域,称为Gromov-Hausdorff距离,近年来,它在经典领域中被证明是非常强大的,可以处理某些广泛的数学情况。我希望应用这种全局近似方法来更好地理解如何有效地近似当前感兴趣的量子现象的各种模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marc Rieffel其他文献
Marc Rieffel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marc Rieffel', 18)}}的其他基金
Operator Theory/Operator Algebras: GPOTS 2013
算子理论/算子代数:GPOTS 2013
- 批准号:
1304893 - 财政年份:2012
- 资助金额:
$ 6.61万 - 项目类别:
Standard Grant
Explorations in Metric Quantum Geometry
度量量子几何探索
- 批准号:
1066368 - 财政年份:2011
- 资助金额:
$ 6.61万 - 项目类别:
Continuing Grant
Investigations in Metric Quantum Geometry
度量量子几何研究
- 批准号:
0753228 - 财政年份:2008
- 资助金额:
$ 6.61万 - 项目类别:
Continuing Grant
Aspects of Metric Quantum Geometry
度量量子几何的各个方面
- 批准号:
0500501 - 财政年份:2005
- 资助金额:
$ 6.61万 - 项目类别:
Continuing Grant
Simple Quantum Groups, Quantum Isometry Groups and Applications
简单量子群、量子等距群及其应用
- 批准号:
9970745 - 财政年份:1999
- 资助金额:
$ 6.61万 - 项目类别:
Standard Grant
Mathematical Sciences: Topics in Modern Analysis
数学科学:现代分析主题
- 批准号:
9613833 - 财政年份:1996
- 资助金额:
$ 6.61万 - 项目类别:
Continuing Grant
Mathematical Sciences: Topics in Modern Analysis
数学科学:现代分析主题
- 批准号:
9303386 - 财政年份:1993
- 资助金额:
$ 6.61万 - 项目类别:
Continuing Grant
Mathematical Sciences: Functional Analysis
数学科学:泛函分析
- 批准号:
8912907 - 财政年份:1989
- 资助金额:
$ 6.61万 - 项目类别:
Continuing Grant
Mathematical Sciences: Functional Analysis
数学科学:泛函分析
- 批准号:
8601900 - 财政年份:1986
- 资助金额:
$ 6.61万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
- 批准号:11875153
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Geometry and topology of quantum materials
职业:量子材料的几何和拓扑
- 批准号:
2340394 - 财政年份:2024
- 资助金额:
$ 6.61万 - 项目类别:
Continuing Grant
Number theory and geometry behind quantum interaction models
量子相互作用模型背后的数论和几何
- 批准号:
24K16941 - 财政年份:2024
- 资助金额:
$ 6.61万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
FET: Small: A triangle of quantum mathematics, computational complexity, and geometry
FET:小:量子数学、计算复杂性和几何的三角关系
- 批准号:
2317280 - 财政年份:2023
- 资助金额:
$ 6.61万 - 项目类别:
Standard Grant
Bayesian Prediction Theory and Information Geometry for Non-regular and Quantum Statistical Models
非正则和量子统计模型的贝叶斯预测理论和信息几何
- 批准号:
23K11006 - 财政年份:2023
- 资助金额:
$ 6.61万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
LEAPS-MPS: Noncommutative Geometry and Topology of Quantum Metrics
LEAPS-MPS:量子度量的非交换几何和拓扑
- 批准号:
2316892 - 财政年份:2023
- 资助金额:
$ 6.61万 - 项目类别:
Standard Grant
Physics of interaband effects: Viewpoint of quantum geometry and topology
带间效应物理学:量子几何和拓扑的观点
- 批准号:
23K03243 - 财政年份:2023
- 资助金额:
$ 6.61万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Interactions between noncommutative geometry and quantum information
非交换几何与量子信息之间的相互作用
- 批准号:
RGPIN-2022-03373 - 财政年份:2022
- 资助金额:
$ 6.61万 - 项目类别:
Discovery Grants Program - Individual
Surfaces and Geometry and Topology of Quantum Link Invariants
量子链接不变量的表面、几何和拓扑
- 批准号:
2244923 - 财政年份:2022
- 资助金额:
$ 6.61万 - 项目类别:
Continuing Grant
Geometry Optimization for Classical and Quantum Computing of Molecule Predictions
分子预测的经典和量子计算的几何优化
- 批准号:
572668-2022 - 财政年份:2022
- 资助金额:
$ 6.61万 - 项目类别:
University Undergraduate Student Research Awards
Hyperbolic Geometry and Quantum Invariants
双曲几何和量子不变量
- 批准号:
2203334 - 财政年份:2022
- 资助金额:
$ 6.61万 - 项目类别:
Standard Grant