Topics in Quantum Geometry
量子几何专题
基本信息
- 批准号:0200591
- 负责人:
- 金额:$ 27.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-07-01 至 2006-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractRieffelOver the past several years I developed a theory of quantum metric spaces, within the setting of algebras of operators on Hilbert space. My theory includes an analog of the classical Gromov-Hausdorff distance between metric spaces. I gave several applications of these ideas, notably to the convergence of matrix algebras to coadjoint orbits of compact Lie groups. I propose to continue to strengthen this theory, and to apply it in several directions suggested by the many situations in the physics and mathematics of quantization where one has a sequence of quantum spaces which appear to be converging to another space, either quantum or classical. As a major new direction I will try to develop an analogous theory for the quantum versions of the superstructure of vector bundles, connections, Yang-Mills actions, etc. I will also try to extend my theory beyond the quantum analog of locally compact spaces, so as to attempt to deal with the approximations of quantum field-theory models, especially those of integrable systems, say by quantum lattice models. Our nation's technological and economic success has at its foundation the mathematical models of the world around us which scientists develop in order to understand how to use the flood of data which flows from the laboratories of the experimental scientists. But human beings and computers can only deal with finite collections of numbers at a time. Thus in applying these mathematical models it is almost always necessary to approximate the infinite variability of our world by finite collections of numbers. It is then crucial to understand how valid any given approximation is. With respect to individual calculations this matter has received extensive study. But less study has been made of how complex models as a whole can be approximated well by simpler models as a whole. Relatively little is known about such "global" approximations in the case of the models of quantum physics, which is the part of physics which governs chemical and biochemical reactions, the functioning of semi-conductors, and many other key technologies. In the classical realm there is an important form of global approximation called Gromov-Hausdorff distance. I have developed a quantum analog of it, and successfully applied it to a few examples. I propose to strengthen this theory, and to apply it to a broader class of examples, so as to better understand how to effectively approximate various models of quantum phenomena of current interest.
AbstractRieffel在过去的几年里,我制定了一个理论的量子度量空间内设置的代数算子的希尔伯特空间。我的理论包括度量空间之间的经典Gromov-Hausdorff距离的模拟。我给了几个应用这些想法,特别是收敛矩阵代数coadjoint轨道的紧凑李群。我建议继续加强这一理论,并将其应用于量子化的物理学和数学中的许多情况所建议的几个方向,其中一个量子空间序列似乎正在收敛到另一个空间,无论是量子空间还是经典空间。作为一个主要的新方向,我将尝试为矢量束、连接、杨-米尔斯作用等超结构的量子版本发展一个类似的理论。我还将尝试将我的理论扩展到局部紧空间的量子类似之外,以便尝试处理量子场论模型的近似,特别是那些可积系统的近似,比如量子晶格模型。我们国家在技术和经济上的成功,是建立在我们周围世界的数学模型的基础上的,科学家们开发这些数学模型是为了了解如何使用从实验科学家的实验室流出的大量数据。但是人类和计算机一次只能处理有限的数字集合。 因此,在应用这些数学模型时,几乎总是需要用有限的数字集合来近似我们世界的无限可变性。因此,理解任何给定近似的有效性是至关重要的。关于个别计算,这一问题已得到广泛研究。但是,对于复杂的模型如何能被简单的模型很好地近似的研究却很少。在量子物理学模型中,对这种“全局”近似的了解相对较少,量子物理学是物理学的一部分,它控制着化学和生物化学反应,半导体的功能以及许多其他关键技术。在经典领域中,有一种重要的全局近似形式,称为Gromov-Hausdorff距离。我已经开发了一个量子模拟,并成功地将其应用于几个例子。我建议加强这一理论,并将其应用于更广泛的例子,以便更好地理解如何有效地近似当前感兴趣的量子现象的各种模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marc Rieffel其他文献
Marc Rieffel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marc Rieffel', 18)}}的其他基金
Operator Theory/Operator Algebras: GPOTS 2013
算子理论/算子代数:GPOTS 2013
- 批准号:
1304893 - 财政年份:2012
- 资助金额:
$ 27.26万 - 项目类别:
Standard Grant
Explorations in Metric Quantum Geometry
度量量子几何探索
- 批准号:
1066368 - 财政年份:2011
- 资助金额:
$ 27.26万 - 项目类别:
Continuing Grant
Investigations in Metric Quantum Geometry
度量量子几何研究
- 批准号:
0753228 - 财政年份:2008
- 资助金额:
$ 27.26万 - 项目类别:
Continuing Grant
Aspects of Metric Quantum Geometry
度量量子几何的各个方面
- 批准号:
0500501 - 财政年份:2005
- 资助金额:
$ 27.26万 - 项目类别:
Continuing Grant
Simple Quantum Groups, Quantum Isometry Groups and Applications
简单量子群、量子等距群及其应用
- 批准号:
9970745 - 财政年份:1999
- 资助金额:
$ 27.26万 - 项目类别:
Standard Grant
Mathematical Sciences: Topics in Modern Analysis
数学科学:现代分析主题
- 批准号:
9613833 - 财政年份:1996
- 资助金额:
$ 27.26万 - 项目类别:
Continuing Grant
Mathematical Sciences: Topics in Modern Analysis
数学科学:现代分析主题
- 批准号:
9303386 - 财政年份:1993
- 资助金额:
$ 27.26万 - 项目类别:
Continuing Grant
Mathematical Sciences: Functional Analysis
数学科学:泛函分析
- 批准号:
8912907 - 财政年份:1989
- 资助金额:
$ 27.26万 - 项目类别:
Continuing Grant
Mathematical Sciences: Functional Analysis
数学科学:泛函分析
- 批准号:
8601900 - 财政年份:1986
- 资助金额:
$ 27.26万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
- 批准号:11875153
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Geometry and topology of quantum materials
职业:量子材料的几何和拓扑
- 批准号:
2340394 - 财政年份:2024
- 资助金额:
$ 27.26万 - 项目类别:
Continuing Grant
Number theory and geometry behind quantum interaction models
量子相互作用模型背后的数论和几何
- 批准号:
24K16941 - 财政年份:2024
- 资助金额:
$ 27.26万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
FET: Small: A triangle of quantum mathematics, computational complexity, and geometry
FET:小:量子数学、计算复杂性和几何的三角关系
- 批准号:
2317280 - 财政年份:2023
- 资助金额:
$ 27.26万 - 项目类别:
Standard Grant
Bayesian Prediction Theory and Information Geometry for Non-regular and Quantum Statistical Models
非正则和量子统计模型的贝叶斯预测理论和信息几何
- 批准号:
23K11006 - 财政年份:2023
- 资助金额:
$ 27.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
LEAPS-MPS: Noncommutative Geometry and Topology of Quantum Metrics
LEAPS-MPS:量子度量的非交换几何和拓扑
- 批准号:
2316892 - 财政年份:2023
- 资助金额:
$ 27.26万 - 项目类别:
Standard Grant
Physics of interaband effects: Viewpoint of quantum geometry and topology
带间效应物理学:量子几何和拓扑的观点
- 批准号:
23K03243 - 财政年份:2023
- 资助金额:
$ 27.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Interactions between noncommutative geometry and quantum information
非交换几何与量子信息之间的相互作用
- 批准号:
RGPIN-2022-03373 - 财政年份:2022
- 资助金额:
$ 27.26万 - 项目类别:
Discovery Grants Program - Individual
Surfaces and Geometry and Topology of Quantum Link Invariants
量子链接不变量的表面、几何和拓扑
- 批准号:
2244923 - 财政年份:2022
- 资助金额:
$ 27.26万 - 项目类别:
Continuing Grant
Geometry Optimization for Classical and Quantum Computing of Molecule Predictions
分子预测的经典和量子计算的几何优化
- 批准号:
572668-2022 - 财政年份:2022
- 资助金额:
$ 27.26万 - 项目类别:
University Undergraduate Student Research Awards
Hyperbolic Geometry and Quantum Invariants
双曲几何和量子不变量
- 批准号:
2203334 - 财政年份:2022
- 资助金额:
$ 27.26万 - 项目类别:
Standard Grant