Harmonic Analysis and Non-commutative Geometry
调和分析和非交换几何
基本信息
- 批准号:9970671
- 负责人:
- 金额:$ 11.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-07-15 至 2002-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractFoxThe project "Non-Commutative Geometry and Harmonic Analysis" is investigating several problems that use the techniques of non-commutative geometry and operator K-theory. We are developing elements in equivariant K-theory based on ideas from geometric quantization for semi-simple Lie groups. These constructions unify and extend previous constructions developed by Fox, Haskel, Julg, and Kasparov. We are using non-commutative geometry to develop models of neural networks, which we hope will have several advantages over the classical models. The models should provide for greater computational efficiency and the framework should allow for the computation of invariants of the large-scale structure of the model.A. Connes and G. Kasparov have developed new areas of mathematics that provide tools for studying systems that are inherently complex. There have been a number of spectacular successes of these ideas when applied to mathematical problems in geometry and topology. The techniques are starting to be used on problems that were originally considered outside the scope of the theory and there is promise that these new tools will prove useful in a huge range of applications. This project consists of two programs using non-commutative geometry. The first program is studying ways that symmetry can incorporated into this new geometry. We have new techniques that we believe are natural and will shed light on the structure of geometric objects. The second program involves the use of non-commutative geometry to develop models of the brain and brain functions, commonly known as neural networks. The inherently complex structure of the brain has been a major stumbling block for mathematical modeling and one of our goals is to apply some of the techniques of non-commutative geometry to obtain new models of neural functioning. An unexpected, but delightful, development has been serious communication between the mathematics department and the neuroscience community on our campus. A true collaboration at the undergraduate, graduate and research level is developing and promises to enrich both mathematics and biology. Mathematical neuroscience has a huge potential for applications (as already demonstrated by the applications of classical neural networks) which will increase as computational power increases and our understanding neural computation expands.
【摘要】“非交换几何与调和分析”项目是利用非交换几何和k -算子理论的技术研究若干问题。基于半简单李群的几何量化思想,我们发展了等变k理论中的元素。这些结构统一并扩展了Fox、Haskel、Julg和Kasparov开发的先前结构。我们正在使用非交换几何来开发神经网络模型,我们希望它比经典模型有几个优势。模型应提供更高的计算效率,框架应允许计算模型大尺度结构的不变量。科恩斯和G.卡斯帕罗夫开发了新的数学领域,为研究本质上复杂的系统提供了工具。当将这些思想应用于几何和拓扑中的数学问题时,已经取得了许多惊人的成功。这些技术开始被用于原先被认为超出理论范围的问题,并且有希望证明这些新工具在广泛的应用中是有用的。这个项目由两个使用非交换几何的程序组成。第一个项目是研究如何将对称融入到新的几何结构中。我们有新的技术,我们相信是自然的,将阐明几何物体的结构。第二个项目涉及使用非交换几何来建立大脑和大脑功能的模型,通常被称为神经网络。大脑固有的复杂结构一直是数学建模的主要障碍,我们的目标之一是应用非交换几何的一些技术来获得神经功能的新模型。一个意想不到但令人愉快的进展是我们校园数学系和神经科学界之间的认真交流。本科生、研究生和研究层面的真正合作正在发展,并有望丰富数学和生物学。数学神经科学具有巨大的应用潜力(经典神经网络的应用已经证明了这一点),随着计算能力的提高和我们对神经计算的理解的扩展,它的应用潜力将会增加。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Fox其他文献
New antimicrobials—sequence and serendipity in San Diego
新抗生素——圣地亚哥的序列和意外发现
- DOI:
10.1038/4282 - 发表时间:
1998-12-01 - 期刊:
- 影响因子:41.700
- 作者:
Jeffrey Fox - 通讯作者:
Jeffrey Fox
Index theory for perturbed Dirac operators on manifolds with conical singularities
圆锥奇点流形上扰动狄拉克算子的指数理论
- DOI:
- 发表时间:
1995 - 期刊:
- 影响因子:0
- 作者:
Jeffrey Fox;Peter Haskell - 通讯作者:
Peter Haskell
Frobenius reciprocity and extensions of nilpotent Lie groups
Frobenius 互易性和幂零李群的扩展
- DOI:
10.1090/s0002-9947-1986-0857436-1 - 发表时间:
1986 - 期刊:
- 影响因子:1.3
- 作者:
Jeffrey Fox - 通讯作者:
Jeffrey Fox
Hodge decompositions and Dolbeault complexes on normal surfaces
法表面上的 Hodge 分解和 Dolbeault 复形
- DOI:
10.1090/s0002-9947-1994-1191611-9 - 发表时间:
1994 - 期刊:
- 影响因子:0
- 作者:
Jeffrey Fox;Peter Haskell - 通讯作者:
Peter Haskell
On the spectra of compact nilmanifolds
关于紧致尼尔流形的光谱
- DOI:
10.1090/s0002-9947-1985-0792812-6 - 发表时间:
1985 - 期刊:
- 影响因子:1.3
- 作者:
Jeffrey Fox - 通讯作者:
Jeffrey Fox
Jeffrey Fox的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey Fox', 18)}}的其他基金
Computational Neurobiology at the Cellular Level
细胞水平的计算神经生物学
- 批准号:
0107718 - 财政年份:2002
- 资助金额:
$ 11.46万 - 项目类别:
Standard Grant
Mathematical Sciences: K Theory and Harmonic Analysis
数学科学:K 理论和调和分析
- 批准号:
9623285 - 财政年份:1996
- 资助金额:
$ 11.46万 - 项目类别:
Continuing Grant
Mathematical Sciences: Index Theory, Coarse Geometry, and Topology of Manifolds
数学科学:索引论、粗略几何和流形拓扑
- 批准号:
9505697 - 财政年份:1995
- 资助金额:
$ 11.46万 - 项目类别:
Standard Grant
Mathematical Sciences: Equivariant KK Theory
数学科学:等变KK理论
- 批准号:
9207729 - 财政年份:1992
- 资助金额:
$ 11.46万 - 项目类别:
Standard Grant
Mathematical Sciences: NSF/CBMS Regional Conference in the Mathematical Sciences - K-homology and Index Theory, August 5-10, 1991; Boulder, Colorado
数学科学:NSF/CBMS 数学科学区域会议 - K 同调和指数理论,1991 年 8 月 5-10 日;
- 批准号:
9014986 - 财政年份:1990
- 资助金额:
$ 11.46万 - 项目类别:
Standard Grant
Mathematical Sciences: Equivariant Index Theory on Non-Compact Manifolds
数学科学:非紧流形等变指数理论
- 批准号:
8903472 - 财政年份:1989
- 资助金额:
$ 11.46万 - 项目类别:
Continuing Grant
Mathematical Sciences: Analysis of the Quasi-Regular Representation of Lie Groups and Index Theory on Non-CompactManifolds
数学科学:李群拟正则表示分析和非紧流形指标论
- 批准号:
8703572 - 财政年份:1987
- 资助金额:
$ 11.46万 - 项目类别:
Continuing Grant
Mathematical Sciences: Inverting Dirac Induction in K-theory
数学科学:K 理论中狄拉克归纳法的反演
- 批准号:
8612016 - 财政年份:1986
- 资助金额:
$ 11.46万 - 项目类别:
Standard Grant
Nato Advanced Study Institute Travel Support Program To: Advanced Study Institute on Representations of Lie Groups And Harmonic Analysis, Liege, Belgium, 09/05-17/77
北约高级研究所旅行支持计划至:李群表示和调和分析高级研究所,比利时列日,09/05-17/77
- 批准号:
7721126 - 财政年份:1977
- 资助金额:
$ 11.46万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Non-homogeneous Harmonic Analysis, Spectral Theory, and Weighted Norm Estimates
合作研究:非齐次谐波分析、谱理论和加权范数估计
- 批准号:
2154335 - 财政年份:2022
- 资助金额:
$ 11.46万 - 项目类别:
Standard Grant
Collaborative Research: Non-homogeneous Harmonic Analysis, Spectral Theory, and Weighted Norm Estimates
合作研究:非齐次谐波分析、谱理论和加权范数估计
- 批准号:
2154321 - 财政年份:2022
- 资助金额:
$ 11.46万 - 项目类别:
Standard Grant
Collaborative Research: Non-homogeneous Harmonic Analysis, Spectral Theory, and Weighted Norm Estimates
合作研究:非齐次谐波分析、谱理论和加权范数估计
- 批准号:
2154402 - 财政年份:2022
- 资助金额:
$ 11.46万 - 项目类别:
Standard Grant
Applied Harmonic Analysis Methods for Non-Convex Optimizations and Low-Rank Matrix Analysis
非凸优化和低阶矩阵分析的应用调和分析方法
- 批准号:
2108900 - 财政年份:2021
- 资助金额:
$ 11.46万 - 项目类别:
Standard Grant
Collaborative research: Weighted Estimates with Matrix Weights and Non-Homogeneous Harmonic Analysis
合作研究:矩阵权重加权估计和非齐次谐波分析
- 批准号:
1856719 - 财政年份:2019
- 资助金额:
$ 11.46万 - 项目类别:
Continuing Grant
Collaborative research: Weighted Estimates with Matrix Weights and Non-Homogeneous Harmonic Analysis
合作研究:矩阵权重加权估计和非齐次谐波分析
- 批准号:
1900268 - 财政年份:2019
- 资助金额:
$ 11.46万 - 项目类别:
Continuing Grant
Collaborative research: Weighted Estimates with Matrix Weights and Non-Homogeneous Harmonic Analysis
合作研究:矩阵权重加权估计和非齐次谐波分析
- 批准号:
1900008 - 财政年份:2019
- 资助金额:
$ 11.46万 - 项目类别:
Continuing Grant
CBMS Conference: Smooth and Non-Smooth Harmonic Analysis
CBMS 会议:平滑和非平滑谐波分析
- 批准号:
1743819 - 财政年份:2018
- 资助金额:
$ 11.46万 - 项目类别:
Standard Grant
Applied Harmonic Analysis to Non-Convex Optimizations and Nonlinear Matrix Analysis
将调和分析应用于非凸优化和非线性矩阵分析
- 批准号:
1816608 - 财政年份:2018
- 资助金额:
$ 11.46万 - 项目类别:
Continuing Grant
Visible actions on spherical homogeneous spaces and applications to non-commutative harmonic analysis
球面齐次空间上的可见行为及其在非交换调和分析中的应用
- 批准号:
17K14155 - 财政年份:2017
- 资助金额:
$ 11.46万 - 项目类别:
Grant-in-Aid for Young Scientists (B)














{{item.name}}会员




