Studies in Numerical Solution of Ordinary Differential Equations
常微分方程数值解的研究
基本信息
- 批准号:9971164
- 负责人:
- 金额:$ 10.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-08-01 至 2003-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
JackiewiczIt is the purpose of this project to study various acceleration techniques for continuous and discrete waveform relaxationiterations. These techniques include exponential, polynomial orToeplitz preconditioning and/or overlapping components of the system. We will also study the construction and implementation of novel numerical methods for ordinary differential equationswhich are special cases of general linear methods. Such methods are appropriate for nonstiff or stiff differential systems in asequential or parallel computing environment. These methods havealso higher potential to preserve qualitative properties of the solution than classical methods. This potential will be exploitedto integrate wave propagation problems with absorbing boundaryconditions.The research supported by this proposal will lead to the developmentof modern software for the solution of many problems in science andengineering which are governed by large differential systems. Thissoftware will be based on novel numerical methods developed in thepast few years by the principal investigator and his coworkers and will utilize modern computer architecture by splitting the underlyinglarge problem into smaller subsystems or subproblems which can then be solved in parallel by allocating them to different processors. Numerical experiments on many problems, for example, acoustic wavepropagation, chemical reactions, movements of a plate under the loadof a car passing through it, catastrophe model for the nerve impulsemechanism, model that describes the dynamics of a system with largenumber of particles which can form clusters, and reaction-diffusionsystems, indicate that these novel methods are more efficient and robust and better suited to take advantage of the state-of-the-artcomputer architecture than the methods which are currently in use forthese problems.
本课题的目的是研究连续和离散波形松弛迭代的各种加速技术。这些技术包括指数、多项式或toeplitz预处理和/或系统的重叠组件。我们还将研究常微分方程的新数值方法的构造和实现,这是一般线性方法的特殊情况。这种方法适用于顺序或并行计算环境下的非刚性或刚性微分系统。这些方法比传统方法更有可能保持溶液的定性性质。这一潜力将被利用来整合波传播问题与吸收边界条件。这一建议所支持的研究将导致现代软件的发展,以解决许多由大型微分系统控制的科学和工程问题。该软件将基于新颖的数值方法,在过去的几年中开发的主要研究者和他的同事,并将利用现代计算机体系结构,将潜在的大问题分成较小的子系统或子问题,然后可以通过分配给不同的处理器并行解决。许多问题的数值实验,例如:声波传播、化学反应、经过它的汽车载荷下的板的运动、神经冲动机制的突变模型、描述具有大量可形成簇的粒子的系统的动力学模型、反应扩散系统。指出这些新方法比目前用于解决这些问题的方法更有效、更健壮,更适合利用最先进的计算机体系结构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zdzislaw Jackiewicz其他文献
Global error estimation for explicit general linear methods
- DOI:
10.1007/s11075-021-01146-1 - 发表时间:
2021-06-18 - 期刊:
- 影响因子:2.000
- 作者:
Ali Abdi;Gholamreza Hojjati;Giuseppe Izzo;Zdzislaw Jackiewicz - 通讯作者:
Zdzislaw Jackiewicz
Construction of <math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si22.svg" class="math"><mi>G</mi></math>- or <math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si23.svg" class="math"><mrow><mi>G</mi><mo>(</mo><mi>ϵ</mi><mo>)</mo></mrow></math>-symplectic general linear methods
- DOI:
10.1016/j.amc.2022.127204 - 发表时间:
2022-10-15 - 期刊:
- 影响因子:
- 作者:
Michal Braś;Giuseppe Izzo;Zdzislaw Jackiewicz - 通讯作者:
Zdzislaw Jackiewicz
A new class of emG/em(emϵ/em)-symplectic general linear methods
一类新的 emG/em(emϵ/em)-辛广义线性方法
- DOI:
10.1016/j.apnum.2022.08.010 - 发表时间:
2023-01-01 - 期刊:
- 影响因子:2.400
- 作者:
Michal Braś;Giuseppe Izzo;Zdzislaw Jackiewicz - 通讯作者:
Zdzislaw Jackiewicz
Strong stability preserving implicit–explicit transformed general linear methods
- DOI:
10.1016/j.matcom.2019.11.008 - 发表时间:
2020-10-01 - 期刊:
- 影响因子:
- 作者:
Giuseppe Izzo;Zdzislaw Jackiewicz - 通讯作者:
Zdzislaw Jackiewicz
Construction of math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si22.svg" class="math"miG/mi/math- or math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si23.svg" class="math"mrowmiG/mimo(/momiϵ/mimo)/mo/mrow/math-symplectic general linear methods
- DOI:
10.1016/j.amc.2022.127204 - 发表时间:
2022-10-15 - 期刊:
- 影响因子:3.400
- 作者:
Michal Braś;Giuseppe Izzo;Zdzislaw Jackiewicz - 通讯作者:
Zdzislaw Jackiewicz
Zdzislaw Jackiewicz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zdzislaw Jackiewicz', 18)}}的其他基金
Construction and Implementation of Efficient Numerical Methods for Ordinary Differential Equations
常微分方程高效数值方法的构建与实现
- 批准号:
0509597 - 财政年份:2005
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
Third International Conference on Numerical Solution of Volterra and Delay Equations; Tempe, Arizona, 2003
第三届Volterra和时滞方程数值解国际会议;
- 批准号:
0224848 - 财政年份:2002
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
U.S.-Italy Cooperative Research: Waveform Relaxation Methods
美意合作研究:波形弛豫方法
- 批准号:
9301044 - 财政年份:1994
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Studies in Numerical Solution of Functional Differential Equations
数学科学:泛函微分方程数值解的研究
- 批准号:
9208048 - 财政年份:1992
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Studies in Numerical Solution of Functional Differential Equations
数学科学:泛函微分方程数值解的研究
- 批准号:
8900411 - 财政年份:1989
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Studies in Numerical Solution of Functional Differential Equations
数学科学:泛函微分方程数值解的研究
- 批准号:
8520900 - 财政年份:1986
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Studies in Numerical Solution of Functional Differential Equations
数学科学:泛函微分方程数值解的研究
- 批准号:
8401013 - 财政年份:1984
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
相似海外基金
Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
- 批准号:
RGPIN-2017-05811 - 财政年份:2022
- 资助金额:
$ 10.5万 - 项目类别:
Discovery Grants Program - Individual
Accurate and Efficient Computational Methods for the Numerical Solution of High-Dimensional Partial Differential Equations in Computational Finance
计算金融中高维偏微分方程数值解的准确高效计算方法
- 批准号:
569181-2022 - 财政年份:2022
- 资助金额:
$ 10.5万 - 项目类别:
Postgraduate Scholarships - Doctoral
Research on coupling solution of soft-rigid multibody dynamics and numerical fluid dynamics
软刚多体动力学与数值流体动力学耦合求解研究
- 批准号:
22K04572 - 财政年份:2022
- 资助金额:
$ 10.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Numerical Solution of Next Generation Inverse Problems for Geophysical Applications
地球物理应用的下一代反问题的数值求解
- 批准号:
RGPIN-2021-03285 - 财政年份:2022
- 资助金额:
$ 10.5万 - 项目类别:
Discovery Grants Program - Individual
Numerical Solution of Large-Scale Sparse Linear Systems Arising from Problems with Constraints
由约束问题引起的大规模稀疏线性系统的数值求解
- 批准号:
RGPIN-2017-04491 - 财政年份:2021
- 资助金额:
$ 10.5万 - 项目类别:
Discovery Grants Program - Individual
Numerical Solution of Next Generation Inverse Problems for Geophysical Applications
地球物理应用的下一代反问题的数值求解
- 批准号:
RGPIN-2021-03285 - 财政年份:2021
- 资助金额:
$ 10.5万 - 项目类别:
Discovery Grants Program - Individual
Numerical Solution of Next Generation Inverse Problems for Geophysical Applications
地球物理应用的下一代反问题的数值求解
- 批准号:
DGECR-2021-00162 - 财政年份:2021
- 资助金额:
$ 10.5万 - 项目类别:
Discovery Launch Supplement
Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
- 批准号:
RGPIN-2017-05811 - 财政年份:2021
- 资助金额:
$ 10.5万 - 项目类别:
Discovery Grants Program - Individual
Efficient Numerical Solution for Constrained Tensor Ring Decomposition: A Theoretical Convergence Analysis and Applications
约束张量环分解的高效数值解:理论收敛性分析及应用
- 批准号:
20K19749 - 财政年份:2020
- 资助金额:
$ 10.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
- 批准号:
RGPIN-2017-05811 - 财政年份:2020
- 资助金额:
$ 10.5万 - 项目类别:
Discovery Grants Program - Individual