Construction and Implementation of Efficient Numerical Methods for Ordinary Differential Equations
常微分方程高效数值方法的构建与实现
基本信息
- 批准号:0509597
- 负责人:
- 金额:$ 9.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-15 至 2009-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many problems in science and engineering are modelled by large systems of differential equations. It is the purpose of the research described in this proposal to design and implement accurate, efficient, reliable, and robust methods for the numerical simulations of such systems. These methods should be capable of exploiting special structure often present in such systems to increase the computational efficiency. Examples of such systems with special structure include many problems in computational fluid dynamics, molecular biology, quantum mechanics, and heat transfer, and their numerical solution requires new more powerful numerical techniques than the classical methods. The novel techniques which will be investigated in this proposal are based on the recent theory of general linear methods and on exponential integrators which treat differently specific parts of the differential systems. Some of the proposed schemes are appropriate for implementation in a parallel computing environment.
科学和工程中的许多问题都是由大型的微分方程组来模拟的。 这是本提案中所描述的研究的目的,设计和实施准确,高效,可靠,鲁棒的方法,这种系统的数值模拟。 这些方法应该能够利用这种系统中经常出现的特殊结构来提高计算效率。 这类具有特殊结构的系统的例子包括计算流体力学、分子生物学、量子力学和传热学中的许多问题,它们的数值求解需要比经典方法更强大的新的数值技术。 新的技术,这将是调查在这个建议是基于最近的理论一般线性方法和指数积分器,不同的处理特定部分的微分系统。 所提出的一些方案是适合在并行计算环境中实施。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zdzislaw Jackiewicz其他文献
Construction of <math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si22.svg" class="math"><mi>G</mi></math>- or <math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si23.svg" class="math"><mrow><mi>G</mi><mo>(</mo><mi>ϵ</mi><mo>)</mo></mrow></math>-symplectic general linear methods
- DOI:
10.1016/j.amc.2022.127204 - 发表时间:
2022-10-15 - 期刊:
- 影响因子:
- 作者:
Michal Braś;Giuseppe Izzo;Zdzislaw Jackiewicz - 通讯作者:
Zdzislaw Jackiewicz
Global error estimation for explicit general linear methods
- DOI:
10.1007/s11075-021-01146-1 - 发表时间:
2021-06-18 - 期刊:
- 影响因子:2.000
- 作者:
Ali Abdi;Gholamreza Hojjati;Giuseppe Izzo;Zdzislaw Jackiewicz - 通讯作者:
Zdzislaw Jackiewicz
A new class of emG/em(emϵ/em)-symplectic general linear methods
一类新的 emG/em(emϵ/em)-辛广义线性方法
- DOI:
10.1016/j.apnum.2022.08.010 - 发表时间:
2023-01-01 - 期刊:
- 影响因子:2.400
- 作者:
Michal Braś;Giuseppe Izzo;Zdzislaw Jackiewicz - 通讯作者:
Zdzislaw Jackiewicz
Strong stability preserving implicit–explicit transformed general linear methods
- DOI:
10.1016/j.matcom.2019.11.008 - 发表时间:
2020-10-01 - 期刊:
- 影响因子:
- 作者:
Giuseppe Izzo;Zdzislaw Jackiewicz - 通讯作者:
Zdzislaw Jackiewicz
Construction of math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si22.svg" class="math"miG/mi/math- or math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si23.svg" class="math"mrowmiG/mimo(/momiϵ/mimo)/mo/mrow/math-symplectic general linear methods
- DOI:
10.1016/j.amc.2022.127204 - 发表时间:
2022-10-15 - 期刊:
- 影响因子:3.400
- 作者:
Michal Braś;Giuseppe Izzo;Zdzislaw Jackiewicz - 通讯作者:
Zdzislaw Jackiewicz
Zdzislaw Jackiewicz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zdzislaw Jackiewicz', 18)}}的其他基金
Third International Conference on Numerical Solution of Volterra and Delay Equations; Tempe, Arizona, 2003
第三届Volterra和时滞方程数值解国际会议;
- 批准号:
0224848 - 财政年份:2002
- 资助金额:
$ 9.1万 - 项目类别:
Standard Grant
Studies in Numerical Solution of Ordinary Differential Equations
常微分方程数值解的研究
- 批准号:
9971164 - 财政年份:1999
- 资助金额:
$ 9.1万 - 项目类别:
Standard Grant
U.S.-Italy Cooperative Research: Waveform Relaxation Methods
美意合作研究:波形弛豫方法
- 批准号:
9301044 - 财政年份:1994
- 资助金额:
$ 9.1万 - 项目类别:
Standard Grant
Mathematical Sciences: Studies in Numerical Solution of Functional Differential Equations
数学科学:泛函微分方程数值解的研究
- 批准号:
9208048 - 财政年份:1992
- 资助金额:
$ 9.1万 - 项目类别:
Continuing Grant
Mathematical Sciences: Studies in Numerical Solution of Functional Differential Equations
数学科学:泛函微分方程数值解的研究
- 批准号:
8900411 - 财政年份:1989
- 资助金额:
$ 9.1万 - 项目类别:
Standard Grant
Mathematical Sciences: Studies in Numerical Solution of Functional Differential Equations
数学科学:泛函微分方程数值解的研究
- 批准号:
8520900 - 财政年份:1986
- 资助金额:
$ 9.1万 - 项目类别:
Standard Grant
Mathematical Sciences: Studies in Numerical Solution of Functional Differential Equations
数学科学:泛函微分方程数值解的研究
- 批准号:
8401013 - 财政年份:1984
- 资助金额:
$ 9.1万 - 项目类别:
Standard Grant
相似海外基金
A Study on Implementation Method of Highly Efficient Motion Compensation Prediction Scheme Using DNN in Video Coding
视频编码中DNN高效运动补偿预测方案的实现方法研究
- 批准号:
23K03843 - 财政年份:2023
- 资助金额:
$ 9.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Construction of an Efficient and Robust Ophthalmic Big Data and AI System through Implementation of Federated Learning
通过实施联邦学习构建高效、鲁棒的眼科大数据和人工智能系统
- 批准号:
23K17434 - 财政年份:2023
- 资助金额:
$ 9.1万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Development and implementation of a small-scale and highly efficient genomic selection method using "look-ahead" based on reinforcement learning
基于强化学习的“前瞻”小规模高效基因组选择方法的开发和实施
- 批准号:
22H02306 - 财政年份:2022
- 资助金额:
$ 9.1万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Neurophysiological mechanisms of avoiding mental health risks during home teleworking and an efficient practical implementation framework
在家远程办公期间避免心理健康风险的神经生理机制及高效的实践实施框架
- 批准号:
22K04613 - 财政年份:2022
- 资助金额:
$ 9.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Implementation of Efficient Asynchronously Coupled Computation with Timed Buffer on NVDIMM
NVDIMM上定时缓冲区高效异步耦合计算的实现
- 批准号:
22K12049 - 财政年份:2022
- 资助金额:
$ 9.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
BUILDING THE EVIDENCE BASE FOR APPROPRIATE AND EFFICIENT IMPLEMENTATION OF EMERGING GENOMIC TESTS FOR DISEASE MANAGEMENT AND SCREENING
为疾病管理和筛查的新兴基因组测试的适当和有效实施建立证据基础
- 批准号:
10227393 - 财政年份:2021
- 资助金额:
$ 9.1万 - 项目类别:
Multi-Center Implementation and Validation of Efficient Magnetic Resonance Imaging and Analysis of Atherosclerotic Disease of the Cervical Carotid
颈动脉粥样硬化疾病高效磁共振成像和分析的多中心实施和验证
- 批准号:
10280858 - 财政年份:2021
- 资助金额:
$ 9.1万 - 项目类别:
Multi-Center Implementation and Validation of Efficient Magnetic Resonance Imaging and Analysis of Atherosclerotic Disease of the Cervical Carotid
颈动脉粥样硬化疾病高效磁共振成像和分析的多中心实施和验证
- 批准号:
10684192 - 财政年份:2021
- 资助金额:
$ 9.1万 - 项目类别:
BUILDING THE EVIDENCE BASE FOR APPROPRIATE AND EFFICIENT IMPLEMENTATION OF EMERGING GENOMIC TESTS FOR DISEASE MANAGEMENT AND SCREENING
为疾病管理和筛查的新兴基因组测试的适当和有效实施建立证据基础
- 批准号:
10612889 - 财政年份:2021
- 资助金额:
$ 9.1万 - 项目类别:
BUILDING THE EVIDENCE BASE FOR APPROPRIATE AND EFFICIENT IMPLEMENTATION OF EMERGING GENOMIC TESTS FOR DISEASE MANAGEMENT AND SCREENING
为疾病管理和筛查的新兴基因组测试的适当和有效实施建立证据基础
- 批准号:
10447733 - 财政年份:2021
- 资助金额:
$ 9.1万 - 项目类别: