State-Sum Methods in Low-Dimensional Topology and Quantum Gravity - Categorical Underpinnings and Applications
低维拓扑和量子引力中的状态和方法 - 分类基础和应用
基本信息
- 批准号:9971510
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-08-01 至 2002-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9971510Yetter This project pursues a number of interrelated and complementarylines of research related to state-sum techniques in low-dimensionaltopology and quantum gravity. Some of these involve the categoricalunderpinnings of state-sum techniques: the investigation of the algebraicstructure of TQFT's, of the deformation theory of categories withstructure, and the categorical underpinnings of ``state-integrals,'' i.e.,measure theoretic analogues of the familiar state-sums. Others aim atapplications of the techniques to topology and quantum gravity: theextension to the Minkowskian signature of the Barrett-Crane state-sumformulation of Euclidean quantum gravity, the investigation andconstruction of topological invariants related to the Barrett-Crane andCrane-Yetter state-sums and their generalizations, and the investigationof the relations between categorical deformation theory and the theoryof Vassiliev knot and link invariants. This project seeks to investigate the structure of 3- and4-dimensional spaces, both the abstract spaces of topology, and thestructure of physical space-times in certain proposed models for aquantum theory of gravity. The problem of quantizing gravity is probablythe deepest unsolved theoretical problem in physics. It points to themost fundamental unknowns in our understanding of the universe, such asthe origin of the universe and black hole physics. Its apparentintractability by using traditional methods suggests that a radically newtype of mathematics may be necessary to solve the problem. The structureof operators on spaces of quantum states, the algebraic structuresdescribing the assembly of spaces or knots and links from simple pieces,and the algebraic data needed to construct state-sums with suitableinvariance properties to investigate both topological structures and toconstruct ``spin-foam'' models of quantum gravity, can all conveniently bedescribed in terms of generalizations and extensions of the theory ofmonoidal categories first introduced by MacLane in the early 1960's.These facts, together with recent progress with the interrelated problemsmentioned above, lead to the hope that the theory of monoidal categoriesmay be the missing tool. Thus, much of the work uses category theory,not as a substitute for set theory as a foundations of mathematics, butas the appropriate sort of algebra for the investigation of spacesabstracted from the one in which we live.***
9971510Yetter这个项目从事了许多与低维拓扑和量子引力中的状态和技术有关的相互关联和互补的研究。其中一些涉及状态和技术的范畴基础:TQFT的代数结构的研究,有结构范畴的形变理论的研究,以及“状态积分”的范畴基础,即测量与常见的状态和的理论相似。其他目的是将这些技术应用于拓扑学和量子引力:欧几里德量子引力的Barrett-Crane态和公式的Minkowskian签名的推广,与Barrett-Crane和Crane-Yetter态和及其推广有关的拓扑不变量的研究和构造,以及范畴形变理论与Vassiliev纽结和链接不变量理论之间的关系的研究。这个项目试图在某些提出的水量子引力理论模型中研究三维和四维空间的结构,既包括抽象的拓扑空间,也包括物理时空的结构。引力的量子化问题可能是物理学中最深刻的未解决的理论问题。它指向了我们对宇宙理解中最基本的未知数,例如宇宙的起源和黑洞物理。它用传统方法显然很难解决,这表明可能需要一种全新的数学来解决这个问题。量子态空间上算符的结构,描述由简单片段组成的空间或纽结和链环的代数结构,以及构造具有适当不变性的状态和以研究拓扑结构和构建量子引力的“自旋泡沫”模型所需的代数数据,都可以很方便地用麦克兰在20世纪60年代初首先引入的么半范畴理论的推广和扩展来描述。这些事实,加上上述相关问题的最新进展,使人们希望一元范畴理论可能是缺失的工具。因此,许多工作使用范畴理论,而不是作为集合理论的替代,作为数学基础,而是作为研究从我们生活的空间抽象出来的空间的适当类型的代数。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Yetter其他文献
David Yetter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Yetter', 18)}}的其他基金
GIG: Infrastructure Improvement for a Research Group for the Study of the Algebra and Geometric of Quantum Physics
GIG:量子物理代数和几何研究小组的基础设施改进
- 批准号:
9510375 - 财政年份:1995
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Mathematical Sciences: Topological Quantum Field Theories and Related Invariants in 3- and 4-Manifold Topology
数学科学:拓扑量子场论和 3 流形和 4 流形拓扑中的相关不变量
- 批准号:
9504423 - 财政年份:1995
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Mathematical Sciences: Conference on Quantum Topology
数学科学:量子拓扑会议
- 批准号:
9216779 - 财政年份:1992
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Mathematical Sciences: Yang-Baxter Operators, Quantum Field Theories and Invariants in Low-Dimensional Topology via HopfAlgebras and Representations of Monoidal Categories
数学科学:Yang-Baxter 算子、量子场论和低维拓扑中的不变量(通过 Hopf 代数和幺半群表示)
- 批准号:
9296069 - 财政年份:1991
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Mathematical Sciences: Yang-Baxter Operators, Quantum Field Theories and Invariants in Low-Dimensional Topology via HopfAlgebras and Representations of Monoidal Categories
数学科学:Yang-Baxter 算子、量子场论和低维拓扑中的不变量(通过 Hopf 代数和幺半群表示)
- 批准号:
9003741 - 财政年份:1990
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
相似国自然基金
SuM神经元中Scg2表达异常在AD小鼠病变中的作用和机制研究
- 批准号:Z25C090005
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
下丘脑SuM-海马DG通路在快速眼动睡眠期参与记忆巩固的作用和机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Counting number fields with finite Abelian Galois group of bounded conductor that can be described as the sum of two squares.
使用有界导体的有限阿贝尔伽罗瓦群来计算数域,可以将其描述为两个平方和。
- 批准号:
2889914 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Studentship
CAREER: Statistics through the Sum of Squares Lens
职业:通过平方和透镜进行统计
- 批准号:
2238080 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Achieving tip-enhanced sum-frequency generation spectroscopy and exploring the new frontiers of surface science
实现尖端增强和频发生光谱学,探索表面科学新前沿
- 批准号:
23H01855 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
GRAPHene device Scale Up of Manufacturing (GRAPH SUM)
GRAPHene 设备制造规模扩大 (GRAPH SUM)
- 批准号:
10075950 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Collaborative R&D
Sum Vivas - Digital Human Avatar Creation
Sum Vivas - 数字人物头像创建
- 批准号:
10066914 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Collaborative R&D
Decoupling Theory and Exponential Sum Estimates
解耦理论和指数和估计
- 批准号:
2409803 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Decoupling Theory and Exponential Sum Estimates
解耦理论和指数和估计
- 批准号:
2311174 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Properties of Hybrids from QCD Sum-Rules
QCD 求和规则的混合属性
- 批准号:
SAPIN-2017-00036 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Subatomic Physics Envelope - Individual
Min-Sum Colouring of Chordal Graphs
弦图的最小和着色
- 批准号:
573174-2022 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
University Undergraduate Student Research Awards
Ultra energy-efficient DNN accelerator based on non-product-sum-type arithmetic
基于非积和型算法的超节能DNN加速器
- 批准号:
22H03555 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Scientific Research (B)