Counting number fields with finite Abelian Galois group of bounded conductor that can be described as the sum of two squares.

使用有界导体的有限阿贝尔伽罗瓦群来计算数域,可以将其描述为两个平方和。

基本信息

  • 批准号:
    2889914
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

The Hermite-Minkowski theorem states that for any positive constant B, there are only finitely many number fields of discriminant less than B. A natural question which then arises is whether we can count these number fields. In 1989 Wright proved this was possible for Abelian extensions, and other specific cases where this is possible were proved by Davenport, Heilbronn and Bhargava. The aim of this project is to prove that one can count the number fields with finite abelian Galois group whose conductor satisfies certain restrictions, namely that it is bounded and the sum of two squares.In order to do so I will define a counting function and study the associated Dirichlet series. In order to do this I will first apply class field theory, in order to be able to study the problem over the adeles, and then use harmonic analysis to study the Dirichlet series, now over the adeles. I will then use a Poisson summation formula to write the Dirichlet series in terms of the Fourier transforms as they are easier to explicitly calculate, and I can use the analytic properties of the Fourier transforms to verify the the analytic properties of the original Dirichlet series. Finally, I will use the Fourier transforms to derive the required asymptotic formula.Although I will be counting by conductor, a possible extension of this would be to count by discriminant instead.The texts I am using are the papers "Number fields with prescribed norms" By Loughran, Frei and Newton, the paper of Landau and that of Serre on finding the asymptotic of numbers representable by the sum of two squares and the book "Advanced analytic number theory: L functions" by Moreno as a reference on harmonic analysis.
Hermite-Minkowski定理指出,对于任何正的常数B,只有1000个判别式小于B的数域。一个自然的问题是,我们是否可以计算这些数域。赖特在1989年证明这是可能的阿贝尔扩展,和其他具体情况下,这是可能的证明达文波特,海尔布龙和Bhargava。本课题的目的是证明有限交换伽罗瓦群的导体满足一定的限制条件,即有界和平方和的数域是可以计数的,为此我定义了计数函数并研究了相应的Dirichlet级数.为了做到这一点,我将首先应用类场论,以便能够研究在adeles上的问题,然后使用调和分析来研究狄利克雷级数,现在在adeles上。然后,我将使用泊松求和公式将狄利克雷级数写成傅立叶变换,因为它们更容易显式计算,并且我可以使用傅立叶变换的分析性质来验证原始狄利克雷级数的分析性质。最后,我将使用傅立叶变换来推导所需的渐近公式。虽然我将计数的导体,一个可能的扩展,这将是计数的判别式代替。我使用的文本是文件“数字段与规定的规范”由Loughran,弗雷和牛顿,论文的朗道和塞尔在寻找渐近的数字表示的两个平方和的书“先进的分析数论:L函数”作为调和分析的参考。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
  • DOI:
    10.1002/cam4.5377
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    4
  • 作者:
  • 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
  • DOI:
    10.1186/s12889-023-15027-w
  • 发表时间:
    2023-03-23
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
  • 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
  • DOI:
    10.1007/s10067-023-06584-x
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
  • 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
  • DOI:
    10.1186/s12859-023-05245-9
  • 发表时间:
    2023-03-26
  • 期刊:
  • 影响因子:
    3
  • 作者:
  • 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
  • DOI:
    10.1039/d2nh00424k
  • 发表时间:
    2023-03-27
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

关于群上的短零和序列及其cross number的研究
  • 批准号:
    11501561
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
堆垒基与Narkiewicz常数的研究
  • 批准号:
    11226279
  • 批准年份:
    2012
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
FcγR基因拷贝数和狼疮性肾炎相关研究
  • 批准号:
    30801022
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
图的一般染色数与博弈染色数
  • 批准号:
    10771035
  • 批准年份:
    2007
  • 资助金额:
    18.0 万元
  • 项目类别:
    面上项目

相似海外基金

Symmetry: Groups, Graphs, Number Fields and Loops
对称性:群、图、数域和循环
  • 批准号:
    DP230101268
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
LEAPS-MPS: Number Fields Generated by Points of Curves and their Galois Groups
LEAPS-MPS:由曲线点及其伽罗瓦群生成的数域
  • 批准号:
    2316946
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
L-functions over number fields and function fields
数域和函数域上的 L 函数
  • 批准号:
    RGPIN-2019-05536
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Additive number theory in number fields
数域中的加法数论
  • 批准号:
    22K13886
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Arithmetic Statistics: Asymptotics on number fields and their class groups
算术统计:数域及其类群的渐近
  • 批准号:
    RGPIN-2020-06146
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Distribution problems for L-functions and number fields
L 函数和数域的分布问题
  • 批准号:
    RGPIN-2021-02952
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Analytic Number Theory over Function Fields
函数域的解析数论
  • 批准号:
    2101491
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Distribution problems for L-functions and number fields
L 函数和数域的分布问题
  • 批准号:
    RGPIN-2021-02952
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Number Theory in Function Fields
函数域中的数论
  • 批准号:
    RGPIN-2016-03720
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic Statistics: Asymptotics on number fields and their class groups
算术统计:数域及其类群的渐近
  • 批准号:
    RGPIN-2020-06146
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了