Topics in Nonparametric Analysis and Model Building
非参数分析和模型构建主题
基本信息
- 批准号:9971579
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-08-15 至 2003-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9971579This project is the continuation of our research on the question of how intuitive and concise linear model concepts and techniques can be extended to nonparametric settings and on the development of nonparametric techniques for model diagnostics, dimensionality reduction, and assessing adequacy of particular classes of models. Some of the procedures considered in this research are based on conditional versions of the familiar regression, covariance, and correlation coefficients, where the conditioning is on covariates restricted to neighborhoods. The size of the neighborhood serves as a resolution scale, and dependence of the response on the covariates is measured and summarized at multiple scales. Other procedures are curve or surface estimators and estimators of integral functionals of distributions. Many of the estimators to be considered depend on smoothing parameters needed in estimation of curves and surfaces. A large part of the research addresses the problem of developing reliable data-based methods for smoothing parameter selection. Properties of estimators are studied using both asymptotic methods and Monte Carlo simulations.Computer data bases of unprecedented size and complexity and the dramatic increase in computer power makes possible the development of more flexible models, concepts, and procedures, which can be used to study relationships between variables and to construct models without relying on rigid global assumptions. Much of the recent work in statistics has addressed this need for more general and flexible methods. This research further extends this work with a special focus on procedures that are counterparts of many commonly used linear model concepts and that expose important features in the data using intuitive and familiar ideas. The developed procedures are applied to financial, economic, insurance, medical, and other data.
9971579这个项目是我们的研究如何直观和简洁的线性模型的概念和技术可以扩展到非参数设置和非参数技术的模型诊断,降维,并评估特定类别的模型的充分性的发展问题的延续。 在这项研究中考虑的一些程序是基于熟悉的回归,协方差和相关系数的条件版本,其中的条件是对协变量限制在附近。 邻域的大小作为分辨率尺度,在多个尺度上测量和总结响应对协变量的依赖性。 其他程序是曲线或曲面估计和分布的积分泛函估计。 要考虑的许多估计依赖于估计曲线和曲面所需的光滑参数。 很大一部分的研究解决的问题,制定可靠的数据为基础的方法,平滑参数的选择。使用渐近方法和Monte Carlo simulation.Computer数据库的前所未有的规模和复杂性和计算机能力的急剧增加,使得更灵活的模型,概念和程序的发展成为可能,它可以用来研究变量之间的关系,并构建模型,而不依赖于严格的全球性假设。 最近在统计方面的许多工作都涉及到对更普遍和灵活的方法的需要。 这项研究进一步扩展了这项工作,特别关注与许多常用线性模型概念相对应的程序,并使用直观和熟悉的想法揭示数据中的重要特征。 所开发的程序适用于金融、经济、保险、医疗和其他数据。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Samarov其他文献
Alexander Samarov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Samarov', 18)}}的其他基金
Topics in Dimensionality Reduction in Nonparametric Statistical Modelling
非参数统计建模中的降维主题
- 批准号:
0505561 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Standard Grant
Topics in Nonparametric Analysis and Model Building
非参数分析和模型构建主题
- 批准号:
9626348 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Continuing grant
Mathematical Sciences: Topics in Nonparametric Analysis and Model Building
数学科学:非参数分析和模型构建主题
- 批准号:
9306245 - 财政年份:1993
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Exploring Regression Structure Using Nonparamentric Functional Estimation
数学科学:使用非参数泛函估计探索回归结构
- 批准号:
9001523 - 财政年份:1990
- 资助金额:
-- - 项目类别:
Continuing grant
Mathematical Sciences: A Local Minimax Mean Square Error Approach to Robust Regression, and Related Problems
数学科学:鲁棒回归的局部极小极大均方误差方法及相关问题
- 批准号:
8408971 - 财政年份:1984
- 资助金额:
-- - 项目类别:
Continuing Grant
相似海外基金
Nonparametric change-point analysis, invariance principles for multivariate Student processes, and asymptotic theory in linear errors-in-variables models
非参数变点分析、多元学生过程的不变原理以及线性变量误差模型中的渐近理论
- 批准号:
RGPIN-2018-05052 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Nonparametric Statistical Inference for Time Series Trend Analysis, and Statistical Modelling Methods with Applications in Health Research and Environmental Science
时间序列趋势分析的非参数统计推断以及在健康研究和环境科学中应用的统计建模方法
- 批准号:
RGPIN-2018-05578 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Nonparametric Statistical Inference for Time Series Trend Analysis, and Statistical Modelling Methods with Applications in Health Research and Environmental Science
时间序列趋势分析的非参数统计推断以及在健康研究和环境科学中应用的统计建模方法
- 批准号:
RGPIN-2018-05578 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Nonparametric change-point analysis, invariance principles for multivariate Student processes, and asymptotic theory in linear errors-in-variables models
非参数变点分析、多元学生过程的不变原理以及线性变量误差模型中的渐近理论
- 批准号:
RGPIN-2018-05052 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Nonparametric Inference for Extrme Value Analysis
极值分析的非参数推理
- 批准号:
DDG-2019-04206 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Development Grant
Nonparametric change-point analysis, invariance principles for multivariate Student processes, and asymptotic theory in linear errors-in-variables models
非参数变点分析、多元学生过程的不变原理以及线性变量误差模型中的渐近理论
- 批准号:
RGPIN-2018-05052 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Nonparametric Inference for Extrme Value Analysis
极值分析的非参数推理
- 批准号:
DDG-2019-04206 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Development Grant
Nonparametric Bayesian Methods for Joint Analysis of Recurrent Events and Survival Time
用于重复事件和生存时间联合分析的非参数贝叶斯方法
- 批准号:
2015428 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Nonparametric Statistical Inference for Time Series Trend Analysis, and Statistical Modelling Methods with Applications in Health Research and Environmental Science
时间序列趋势分析的非参数统计推断以及在健康研究和环境科学中应用的统计建模方法
- 批准号:
RGPIN-2018-05578 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Enlargement of the scope of data analysis by extending nonparametric tests
通过扩展非参数检验扩大数据分析范围
- 批准号:
19K06856 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)