Correlated Many-Chain Dynamics: Slow Modes, Entanglements, and Glass Transition.

相关的多链动力学:慢速模式、纠缠和玻璃化转变。

基本信息

  • 批准号:
    9971687
  • 负责人:
  • 金额:
    $ 18.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-06-01 至 2003-05-31
  • 项目状态:
    已结题

项目摘要

9971687 Guenza A key to understanding the technological and biological properties of polymeric materials is to have a powerful theoretical approach that is capable of making the connection between molecular structure and experimental data. A molecular level understanding of the macroscopic properties of polymeric systems is essential for a successful tailored synthesis of new materials with specific properties. Several rigorous theoretical approaches have been developed that successfully describe the experimental findings on the basis of a microscopic physical picture. However, since the range of temporal and spatial scales of the important motions in polymeric fluids is so broad (from psec to days, years or even longer), in the past different approaches have been developed that are specific for each physical phenomenon. For some important phenomena, a theory has not yet been developed, as in the case of the dynamics of supercooled polymer systems.To have a consistent treatment of the physics of polymers we need to have a theory that can describe, in a unified way, polymer systems in different environments: at different temperatures (from the melt to the glass transition), different polymer volume fractions (from single molecule solution to melt), different architectures (linear, star, dendrimers), and different local polymer flexibilities (protein, DNA, polymer liquid srystals). While the importance of a unified theory has always been clear in principle, it has never been possible to achieve this goal until now.A new theoretical approach is developed and applied for a unified picture of the dynamics of polymeric systems. The key ingredient is the presence of contributions describing not only the intramolecular, but also the intermolecular interaction terms in the dynamic equations. For weak intermolecular interactions, the theory recovers the single chain dynamics as described by the Rouse theory with memory function, i.e., the generalized Langevin equation. Increasing the strength of the intermolecular interactions, the theory describes the simultaneous dynamics of many chains characteristic of a polymeric liquid. For very strong intermolecular interactions anomalous exponents appear in the polymer diffusion and time correlation functions. Interestingly, the strength of the potential can be enhanced in different ways: by increasing the molecular weight of the polymer, by increasing the polymer volume fraction, or by decreasing the temperature of the system. The same equations describe the anomalous dynamics that appear in entangled polymer fluids, supercooled polymer systems, and highly dense polymer fluids.%%%A key to understanding the technological and biological properties of polymeric materials is to have a powerful theoretical approach that is capable of making the connection between molecular structure and experimental data. A molecular level understanding of the macroscopic properties of polymeric systems is essential for a successful tailored synthesis of new materials with specific properties. Several rigorous theoretical approaches have been developed that successfully describe the experimental findings on the basis of a microscopic physical picture. However, since the range of temporal and spatial scales of the important motions in polymeric fluids is so broad (from psec to days, years or even longer), in the past different approaches have been developed that are specific for each physical phenomenon. For some important phenomena, a theory has not yet been developed, as in the case of the dynamics of supercooled polymer systemsIn this grant a new theory will be developed which provides a unified approach to diverse phenomena in polymers. Besides increasing our fundamental understanding of these systems, this work will also have technological applications.
9971687 甘扎 理解聚合物材料的技术和生物学特性的关键是要有一个强大的理论方法,能够使分子结构和实验数据之间的联系。 对聚合物体系宏观性质的分子水平理解对于成功地定制合成具有特定性质的新材料是必不可少的。 已经开发了几种严格的理论方法,成功地描述了微观物理图像的基础上的实验结果。 然而,由于聚合物流体中的重要运动的时间和空间尺度的范围是如此之广(从皮秒到天,年或甚至更长),在过去,已经开发了不同的方法,具体针对每种物理现象。 对于一些重要的现象,理论还没有发展出来,例如过冷聚合物系统的动力学。为了对聚合物物理学有一致的处理,我们需要有一个理论,可以统一地描述不同环境中的聚合物系统:在不同温度下(从熔体到玻璃化转变),不同的聚合物体积分数(从单分子溶液到熔融)、不同的结构(线性、星星、树枝状聚合物)和不同的局部聚合物柔性(蛋白质、DNA、聚合物液体晶体)。 虽然统一理论的重要性在原则上一直是明确的,但直到现在还不可能实现这一目标。 的关键成分是存在的贡献,不仅描述了分子内,但也分子间的相互作用项的动力学方程。对于弱的分子间相互作用,该理论恢复了具有记忆功能的Rouse理论所描述的单链动力学,即,广义朗之万方程 增加分子间相互作用的强度,该理论描述了聚合物液体的许多链特征的同时动力学。 对于非常强的分子间相互作用的异常指数出现在聚合物扩散和时间相关函数。 有趣的是,势的强度可以通过不同的方式增强:通过增加聚合物的分子量,通过增加聚合物的体积分数,或通过降低系统的温度。 同样的方程描述了出现在缠结聚合物流体、过冷聚合物系统和高密度聚合物流体中的异常动力学。理解聚合物材料的技术和生物学特性的关键是要有一个强大的理论方法,能够使分子结构和实验数据之间的联系。 对聚合物体系宏观性质的分子水平理解对于成功地定制合成具有特定性质的新材料是必不可少的。 已经开发了几种严格的理论方法,成功地描述了微观物理图像的基础上的实验结果。 然而,由于聚合物流体中的重要运动的时间和空间尺度的范围是如此之广(从皮秒到天,年或甚至更长),在过去,已经开发了不同的方法,具体针对每种物理现象。 对于一些重要的现象,理论还没有发展,如在过冷聚合物系统的动力学的情况下,在这个赠款将发展一个新的理论,提供一个统一的方法来处理聚合物中的各种现象。 除了增加我们对这些系统的基本理解外,这项工作还将具有技术应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marina Guenza其他文献

A Comparison of Collective Coordinates for Analyzing Protein Dynamics
  • DOI:
    10.1016/j.bpj.2017.11.1294
  • 发表时间:
    2018-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Eric R. Beyerle;Marina Guenza
  • 通讯作者:
    Marina Guenza

Marina Guenza的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marina Guenza', 18)}}的其他基金

Multi-scale Modeling of Macromolecular Liquids, and Macromolecules in Solution
高分子液体和溶液中高分子的多尺度建模
  • 批准号:
    2154999
  • 财政年份:
    2022
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Continuing Grant
Coarse-Graining of Molecular Liquids in Time and Space
分子液体在时间和空间上的粗粒化
  • 批准号:
    1665466
  • 财政年份:
    2017
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Continuing Grant
Coarse-Graining of Complex Liquids: Structure and Dynamics
复杂液体的粗粒化:结构和动力学
  • 批准号:
    1362500
  • 财政年份:
    2014
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Standard Grant
Theoretical Approaches to Bridge Timescales in Polymer Dynamics
聚合物动力学中桥接时间尺度的理论方法
  • 批准号:
    0804145
  • 财政年份:
    2008
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Continuing Grant
Cooperative Dynamics in Polymer Fluids and their Mixtures
聚合物流体及其混合物中的协同动力学
  • 批准号:
    0509808
  • 财政年份:
    2005
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Continuing Grant
Cooperative Dynamics in Polymer Fluids: Melts, Blends, and their Glass Transition
聚合物流体中的协同动力学:熔体、共混物及其玻璃化转变
  • 批准号:
    0207949
  • 财政年份:
    2002
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Continuing Grant

相似国自然基金

Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

CAREER: Real-Time First-Principles Approach to Understanding Many-Body Effects on High Harmonic Generation in Solids
职业:实时第一性原理方法来理解固体高次谐波产生的多体效应
  • 批准号:
    2337987
  • 财政年份:
    2024
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Continuing Grant
CAREER: Many-Body Green's Function Framework for Materials Spectroscopy
职业:材料光谱的多体格林函数框架
  • 批准号:
    2337991
  • 财政年份:
    2024
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Standard Grant
NSF-BSF: Many-Body Physics of Quantum Computation
NSF-BSF:量子计算的多体物理学
  • 批准号:
    2338819
  • 财政年份:
    2024
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Continuing Grant
Topology in many-body quantum systems in and out of equilibrium
处于平衡状态和非平衡状态的多体量子系统中的拓扑
  • 批准号:
    2300172
  • 财政年份:
    2024
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Continuing Grant
Instruments of Unity: The Many Ways of Being One
团结的工具:合一的多种方式
  • 批准号:
    EP/Y014278/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Research Grant
'And many a strange adventure came my way in that time': Adaptation of the 13th c. French text 'The Quest of the Holy Grail' in 15th c. Ireland.
“在那段时间里,我经历了许多奇怪的冒险”:改编自 13 世纪。
  • 批准号:
    2506854
  • 财政年份:
    2024
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Studentship
Is to achieve a breakthrough in the problem of how to reliably control the many qubits in an errorfree and scalable way.
就是要在如何以无错误且可扩展的方式可靠地控制众多量子比特的问题上取得突破。
  • 批准号:
    2906479
  • 财政年份:
    2024
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Studentship
Towards a practical quantum advantage: Confronting the quantum many-body problem using quantum computers
迈向实用的量子优势:使用量子计算机应对量子多体问题
  • 批准号:
    EP/Y036069/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Research Grant
Understanding spectral statistics and dynamics in strongly-interacting quantum many-body systems
了解强相互作用量子多体系统中的光谱统计和动力学
  • 批准号:
    EP/X042812/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Fellowship
CAREER: Quantum Information Theory of Many-body Physics
职业:多体物理的量子信息论
  • 批准号:
    2337931
  • 财政年份:
    2024
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了